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Abstract

The goal of this project is the development of an optimization algorithm for
use with numerical silicon solar cell models. By coupling an optimization algo-
rithm with a solar cell model, it is possible to simultaneously vary design variables
such as impurity concentrations, front junction depth, back junction depth, and cell
thickness to maximize the predicted cell efficiency. An optimization algorithm has
been developed and interfaced with the Solar Cell Analysis Program in 1 Dimen-
sion (SCAP1D). SCAPI1D uses finite difference methods to solve the differential
equations which, along with several relations from the physics of semiconductors,
describe mathematically the performance of a solar cell. A major obstacle is that
the numerical methods used in SCAP1D require a significant amount of computer
time, and during an optimization the model is called iteratively until the design
variables converge to the values associated with the maximum efficiency. This
problem has been alleviated by designing an optimization code specifically for use
with numerically intensive simulations, to reduce the number of times the
efficiency has to be calculated to achieve convergence to the optimal solution.
Adapting SCAPI1D so that it could be called iteratively by the optimization code
provided another means of reducing the CPU time required to complete an optimi-
zation. Instead of calculating the entire I-V curve, as is usually done in SCAP1D,
only the efficiency is calculated (maximum power voltage and current). The solu-
tion from a previous calculation is used to initiate the next efficiency calculation.
Optimizations have been run for a variety of substrate qualities and levels of front
and back surface passivation. This was done to determine how these variables
affect the optimized efficiency and the values of the optimized design variables.
The sensitivity of efficiency to each of the design variables was investigated.
Several modifications were made to the SCAPID model to allow other objective
functions to be optimized, identify the effects of the physical mechanisms limiting
cell efficiency, and use light trapping to define high efficiency designs.

xii



1 Introduction

There has been considerable research in recent years to make solar cells a
more economical source of energy. A large part of that research has been devoted
to gaining a better understanding of the parameters that affect the performance of
solar cells. One means of achieving a better understanding of solar cells is to
develop a model, a mathematical representation or simulation of a system which
incorporates the available physical knowledge of the system. A model can be used
as an analytical tool to provide insight about the effects of and the relationships
between the components that make up the model. For instance, a model is a valu-
able tool for investigating the performance of different solar cell designs without
having to build the device that corresponds to each design.

Silicon is a leading candidate material for solar cells because there is a large
body of knowledge about its properties and fabrication techniques due to its use in
the semiconductor industry. It is possible to model a silicon solar cell using
Poisson’s equation, the continuity equations, and knowledge from the physics of
semiconductors. The resulting set of differential equations does not permit an
analytical solution unless several simplifying assumptions are made. One way of
incorporating fewer assumptions than in analytic models (in an effort to increase
the accuracy of the model), is to solve the differential equations numerically.

Accurate numerical models of silicon solar cells have been developed and
used to determine the effects of cell design on performance. One method that has
been used is to vary one design variable while holding the rest of the design vari-
ables constant [e.g., 1.1-1.7]. This leads to an understanding of the effect of the
variable that is varied, but the knowledge obtained is valid only at the current
values of the other inputs. The problem of finding the design which optimizes per-
formance is very tedious and inexact using this approach, particularly if more than
two design variables are considered. Such methods use the definition of optimum
rather loosely.




Another means of arriving at an optimum design is to use analytical methods
along with several simplifying assumptions to derive the optimum design [e.g., 1.8
and 1.9). This approach, while instructive, defeats the primary purpose of develop-
ing a numerical model which is to avoid many of the assumptions required for an
analytical analysis.

The need for a numerical model implies that the process modeled is
sufficiently sophisticated and complex to make the above methods of analysis less
than ideal. In this work, optimization theory, which can be used to define the
optimum design in an exact and rigorous manner, will be used to solve the prob-
lem of armriving at an optimum design. An optimization algorithm provides an
automated method for arriving at an optimum silicon solar cell design. The use of
an optimization algorithm does not serve as a substitute for the knowledge of the
system that is modeled, since knowledge of the physical system is necessary to
insure the validity and correct interpretation of the results that are obtained from
the optimization. The knowledge of the system can be extended and/or quantified
by correctly interpreting the results obtained by optimization.

The first goal of this work is to develop an optimization method that can be
used effectively with cpu intensive simulations. The second goal is to couple the
optimization algorithm developed with the Solar Cell Analysis Program in 1
Dimension (SCAP1D). SCAPID uses numerical methods to solve the differential
equations that represent solar cell performance. The third goal is to demonstrate
the effectiveness of using the optimization algorithm coupled with the SCAP1D
model by doing an analysis of solar cell designs.

There are several difficulties in performing an optimization when the objective
function is an output from a complex numerical process such as SCAP1D. Optimi-
zation methods require that the objective function be calculated iteratively until the
optimization converges. Hence, a major obstacle in applying optimization tech-
niques to SCAPI1D is the amount of computational effort required to execute the
model. The major design criterion for the optimization method to be described is
that it converge reliably without requiring an excessive number of function calls.
The computational burden required to complete an optimization can be reduced by
properly adapting SCAP1D to an iterative environment to insure that only the cal-
culations necessary to determine the objective function are performed. Another
difficulty is that the execution of SCAPID requires the use of several iterative
algorithms that may affect the comparison of objective function evaluations associ-
ated with different values of the design variables.

The optimization method to be presented is not limited for use with SCAP1D,
but was designed to be efficient (in terms of the number of objective evaluations
required), reliable, and easy to interface with any numerical model. The changes



made to SCAP1D are specific to that model, but the same steps can be used to
adapt any numerical silicon solar cell model with the optimization method
presented. More generally, any numerical model can be successfully adapted for
use with the optimization method presented by using techniques similar to the ones
presented in this work.

In the next chapter, the optimization problem to be solved is stated mathemat- .
ically, previous work to solve this problem is summarized, and an outline is given
of the optimization method to be used to solve the problem. Understanding the
model is critical to insure that valid results are obtained and the results are properly
interpreted. Therefore, the third chapter describes the SCAP1D model. The equa-
tions to be solved are given and the parameters used are mathematically defined.
The program inputs are described, and the effect of the inputs on the coefficients of
the equations is noted. Then, the numerical method used to solve the equations
during a single run of SCAP1D is described.

In the fourth chapter, the strategy used to adapt SCAP1D to an optimization
environment is described. The emphasis is on changes required to insure the
objective function is calculated to sufficient accuracy for an optimization and to
reduce the computational burden of calculating the objective function iteratively.
In the fifth chapter, the optimization code developed for use with SCAPID is
described in detail, stressing those aspects that make it appropriate for use with cpu
intensive simulations.

In the sixth chapter, the results of numerous optimization runs are given for
cells modeling various levels of technology. A sensitivity analysis is presented for
the design variables and for the variables related to the level of technology
modeled. In the seventh chapter, the effects of lateral resistance on cell efficiency
are further investigated.

In the eighth chapter, a limit analysis is carried out by considering each of the
loss mechanisms individually. The results along with the conclusions from the pre-
vious two sections are used to define high efficiency designs.




2 Overview of Problem

To illustrate more clearly the ideas presented in the introduction, the problem
of optimizing the design of a silicon solar cell (simulated by SCAP1D) will be for-
mulated and stated mathematically. Some knowledge of the operation of solar
cells and the design variables involved is assumed. Previous work to solve this
problem is summarized. The optimization code developed will then be outlined to
more clearly illustrate the required interface with SCAP1D.

2.1 Mathematical Formulation

The use of optimization techniques requires two basic components, an objec-
tive function and decision variables (also referred to as design variables in this
application). In addition, constraints may be specified to restrict the values that the
decision variables may attain. SCAP1D has several outputs (results) that may be
used as an objective function. With regard to cell design, the primary objective is
to maximize the cell efficiency. The efficiency of a solar cell is defined as the
power output (electrical output of the cell) divided by the power input (incident
solar illumination).

The decision variables in the optimization are those aspects of solar cell
design over which an engineer can exercise a reasonable degree of control. A sin-
gle crystal silicon solar cell is a large area diode. A diode has the doping concen-
tration as a function of x (since SCAP1D is a one dimensional model) and the cell
thickness as design variables. Other design variables can be defined exterior to the
single crystal silicon cell (e.g., anti-reflection coating, contact grids, etc.), but these
are not modeled by SCAP1D.

Ideally, it is desirable to optimize the doping concentration for all x, but the
required representation would lead to an exorbitant number of variables for an
optimization application. Instead, a representation must be chosen that will specify
the doping concentration throughout the device using a manageable number of



variables. In figure 2.1, the doping concentration between the front surface and the
bulk of the device is defined by a complementary error function. The front junc-
tion occurs where the net doping density is equal to zero. The doping concentra-
tion of the bulk of the device is assumed constant. A complementary error func-
tion is also used between the bulk of the device and the back surface. The back
junction depth is measured from the back of the device. Hence, the doping con-
centration is defined for all x by the the front surface doping concentration (D),
the front junction depth (X), the bulk doping concentration (Dg), the back junction
depth (X,), and the back surface doping concentration (Dy). These variables, along
with the cell thickness (X), are the decision variables for the optimization prob-
lem.

Figure 2.1 illustrates the doping concentration for a n-p-p* cell. The optimi-
zation and simulation program described in this work may be used for cells with a
p-type type emitters and a n-type base (p-n). Also, any number of hi-lo junctions
can be defined and included in the optimization (e.g., chapter 7 considers a n*-n-p-
P

Upper and lower bounds may be defined for each of the decision variables to
insure they take on values that are practically achievable and/or within the validity
of the model. Linear constraints may also be used to insure that the same con-
siderations are enforced for relationships that involve more than one variable.

The problem statement is (referred to as problem Pl in the text):
maximize Cff( Do, Xf, DB’ Xb, DL’ XL ) (Pl)

Subject to the following constraints: t

14 < log Dy < 20.6
14 < logDg < 20.6
14 < log DL < 20.6
0.1 < X; < 100
02 = X, < 500
100 < X < 300.0
0.0 < log D - log Dg
00 < X, -X;—-Xp »

"The log denotes log;o and is used to transform the magnitude of the doping concentrations.
Therefore, the constraints involving the log of the doping concentrations are linear constraints.
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eff = efficiency %

Dy = net front surface doping concentration (P atoms - B atoms]/cm”
Dy = net bulk doping concentration [B atoms - P atoms]/cm3
Dy = net back surface doping concentration [B atoms - P atoms]/cm’
X; = Front junction depth pum

X, = Back junction depth um

X = Cell thickness pm.

There is an efficiency associated with each point in the design variable space.
Hence, an efficiency surface in the six dimensional space of the decision variables
is defined (e.g., analogous to the case with two decision variables which results in
a 3-D plot). The constraints define the region in the decision space that may be
searched for the maximum efficiency (referred to as the feasible region).

Some inputs to the solar cell model are determined by the fabrication tech-
niques used and the current state of technology. Such inputs, which will be
referred to as technology variables in this work, are not included in the optimiza-
tion as decision variables (see section 3.6 for a more complete discussion). Tech-
nology and fabrication considerations may also affect the bounds on the decision
variables (the feasible region to be searched). Changing technology variables can
be thought of as altering the efficiency surface described above. This may change
the maximum value of the efficiency and/or where it is located in the decision
space. Hence, to do a complete analysis of silicon solar cell design it is necessary
to solve the above problem more than once.

A complete analysis of a variety of devices can be used to compare the best
efficiency predicted for different fabrication techniques and levels of technology. It
is hoped that this will point out the possible benefits of certain fabrication tech-
niques and/or the most promising directions for future research in terms of increas-
ing efficiency. The study is limited to single crystal silicon solar cells of conven-
tional geometry (i.e., front and back surface contacts) that can be modeled using
SCAP1D. Since SCAPID is a one dimensional code, it cannot be used to simulate
the performance of designs that are two dimensional in nature (e.g., interdigitated
back contact cells).

*P, which stands for Phosphorus, is a donor or n-type impurity. B, which stands for Boron, is
an acceptor or p-type impurity. Therefore, this optimization is for a n-p-p* silicon solar cell
with conventional geometry (i.e., contacts on front and back surfaces).




In problem P1, a solar cell without a back surface field (referred to as a con-
ventional or CV cell) is defined if the optimization converges to a point where
Dg = D;. However, the optimization, as formulated in problem P1, may not result
in a CV cell. By removing decision variables X, and Dy from problem P1, a new
optimization problem is defined that is guaranteed to result in a CV cell and
requires fewer decision variables.

maximize eff( Dy, X, Dg, X ) ' P2)

Subject to the following constraints:
14 < log Dy < 20.6

14 < logDg < 20.6
0.1 £ X; < 100
10.0 £ X < 3000
00 s X, - X;

The mathematical formulation P2 is similar to P1 in that it consists of an objective
function, decision variables, and constraints.

2.2 Previous Work

In this section, previous work done to investigate the effects of cell design on
efficiency will be reviewed. Some of the most recent studies are shown in table
2.1 . The studies are classified according to the type of model and the method of
analysis used. Numerical modeils solve the governing differential equations using
numerical methods (e.g., finite difference methods). Using this approach the cell
parameters (doping concentration, mobility, lifetime, etc.) can be different at each
finite difference mesh point. The middle entry in table 2.1 refers to models that
divide the cell into a limited number of regions (or layers) associated with different
values of the cell parameters. Analytical models use an explicit expression, which
is based on an analytical solution of the governing differential equations, for the
cell efficiency. The more sophisticated analytical models (e.g., those including
bandgap narrowing, doping dependence of lifetime, etc.) involve complex expres-
sions and are usually implemented on a computer for analysis (e.g., model used in
[1.97). In general, analytic models require more assumptions (less generality in the
cell parameters, so that an analytic solution of the differential equations can be
found) and are therefore regarded as less accurate.



Table 2.1 Previous Work

Analytic Numerical(layers) Numerical

Parametric Verlinden Wolf (1985), Lin JPL (1985),
(1985), Chen & (1985) Weaver (1982),
Wu (1981), Lindholm & Sah
Green  (1982), (1984)
Ruiz (1984)

Optimization Chen & Wu

(1985)

To investigate the effects of cell design on efficiency, the method of analysis
may be parametric analysis or optimization. With one exception, the method of
analysis used in the studies shown in table 2.1 has been limited to parametric
analysis [1.1-1.7]. Using parametric analysis, one variable is varied while the other
design variables are held fixed. This investigates the efficiency surface along a line
in the decision space. Parametric methods are used primarily to investigate the
effect of one or two of the design variables (e.g., base doping [1.3], back junction
depth [1.7]). In the absence of other methods, parametric studies have provided
knowledge as to the effects of some design variables on cell efficiency. However,
the conclusions about the effect of the parametrically varied variable are valid only
at the values assumed for the other design variables. If the value of any of the
other design variables is changed, a move is made to a different place on the
efficiency surface, where the effects of the variable being investigated may be
different.

Some of the more extensive parametric studies are summarized below. This
is done so that the conclusions can be easily referenced and compared to the results
to be presented in this work (the comparisons are made in chapters six and seven).
In particular, it is of interest to determine whether the conclusions of the
parametric analyses agree with those of an optimization. As opposed to the fixed
values of design variables used in a parametric analysis, in an optimization all the
design variables are allowed to vary simultaneously.

It is stressed that the values assumed for the variables that are held fixed dur-
ing a parametric analysis are critical and will affect the conclusions of a study.




When available, the values of the variables held constant are given for each of the
studies discussed. The model used will also affect the results of a study. How-
ever, since all of the models are fairly sophisticated, the use of different models
should not lead to different conclusions. The models used in the studies are
classified in table 2.1 but are not discussed individually.

M. Wolf [1.1] studied the effects of the design of the emitter and a thick BSF.
For the BSF study, the bulk of the device is 200 um, the bulk doping concentration
as 5 x 106, with a lifetime of 0.8 ms (at 5 x 10'6), the back contact is taken as
ohmic, and the BSF is thick with a uniform profile. The doping concentration in
the BSF region was varied from 5 x 106 (no BSF) to 5 x 10?°. The conclusion
was that no benefit in efficiency could be achieved with a thick BSF, but that the
same efficiency could be achieved with a thinner cell when compared to a CV
(conventional, n-p) cell.

The emitter study used a bulk doping of 2 x 10!7, front junction depth of 0.3
pm, and a exponential profile for the emitter. Different combinations of the front
surface doping concentration and the front surface recombination velocity (S;) were
investigated. The main conclusion of this study was that higher doping concentra-
tions are optimal at high values of S;, while lower concentrations should be used
when good surface passivation is possible. Furthermore, to take advantage of good
surface passivation it is necessary to use a lightly doped emitter, or the beneficial
effects of surface passivation are defeated by heavy doping effects in the emitter.
For instance, cell performance was found to be practically independent of S¢ (i.e.,
lowering S; did not significantly improve the cell efficiency) at surface doping con-
centrations of 2 x 102! (at S¢ > 10° this doping level was optimal).

Lin [1.3] did a whole series of parametric studies on many variables (technol-
ogy as well as design variables). For a cell thickness of 250 um, front junction
depth 0.3 um, S; of 104, S, of 107, and constant front and back surface doping
concentrations and profiles, several combinations of bulk resistivity (BR, higher
doping in base leads to lower BR), diffusion length, and back junction depths were
investigated. The conclusion was that best cell performance would be obtained
from low BR cells for which there was little or no improvement with the addition
of a BSF. A BSF was observed to improve performance for high BR cells. For
high BR cells, a thicker back surface junction (investigated up to 10 pm) showed
the greatest amount of improvement.

Parametric analysis of CV cells for S¢ (X = 250 pum, X¢ = 0.2 um, and Sy, =
107) and for Sy (X = 250 um, X; = 0.2 um, and S; = 10%) resulted in the conclu-
sion that low BR cells were less sensitive to the effects of surface recombination.
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An investigation of numerous emitter profiles resulted in the conclusion that
there was almost no sensitivity to profile.

Efficiency was insensitive to cell thickness over the range 100 to 350 pum for
cells with a back surface reflector (BSR).

Weaver [1.5] used parametric analysis to compare a BSF and a CV solar cell.
The variables held fixed included Dy = 1 x 10?9, Dy = 2 x 10%, X; = 0.35 pm, X,
= 1.0 pum, S¢ = 10 cmvs, back contact ohmic, profiles of emitter and BSF were
Gaussian, and X = 300 um. The bulk doping was then varied. The conclusion
was that a CV cell can do as well as a BSF cell by using high bulk doping. Furth-
ermore, back surface passivation fails to improve efficiency if a highly doped BSF
is in use (similar to conclusions made by Wolf for the emitter). The author noted
that at a cell thickness of 50 um a BSF cell is superior to a CV cell.

An analysis of a HLE (high-low emitter) was completed with the conclusion
that a CV cell did just as well. Where as Chen [1.4], using different cell parame-
ters suggests that HLE is superior to CV due to lower lateral resistance.

Lindholm and Sah [1.7] investigated the effect of a drift-field (DF, a thick
diffused BSF) as compared to the more standard thin diffused BSF. The fixed
parameters were X = 50 um, Dg = 1017, T = 20 us, and an ohmic back contact.
The conclusion was that DF cell was superior to the standard BSF cell.

All of the above results are valid only for the values of the technology vari-
ables used in the studies and for the fixed values of the other design variables.
The latter represents a major limitation of doing a design study using parametric
analysis. For this reason, some of the conclusions of the above studies appear to
contradict each other (e.g., on the effect of a BSF). In some of the studies sum-
marized above, not all the values of the design and technology variables held fixed
were specified in the published results.

A very desirable result of studies investigating the effects of design variables
on solar cell performance would be the solution of problem P1 and/or P2. How-
ever, the solution of problem P1 is very difficult using parametric (heuristic)
methods. For more than two design variables, the effort required to find the
optimal design is prohibitive using heuristic methods (commonly referred to as the
curse of dimensionality). An optimization algorithm can be coupled with a solar
cell model to more effectively solve problems posed in the form of P1 and/or P2.
Optimization is the other method of analysis referred to in table 2.1.

In [1.9], Chen and Wu recognized the limitations of heuristic methods to
solve problems such as P1 and P2. They developed an analytical model of a solar
cell and used it in conjunction with a direct search (i.e., no use of gradients) optim-
ization algorithm [2.1] to solve a problem related to problem P2. They also
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suggested that the same methods had been used to solve a problem similar to P1
(i.e., included a back surface field).

The analysis in [1.9] is limited by the simplifying assumptions required to
derive the analytical model (e.g., uniform doping). The reason stated for using an
analytical model is to avoid the computational effort associated with a numerical
solution of the semiconductor equations.

In [1.9], the front surface and back surface recombination velocities were
included in the problem statement as decision variables. When optimized, the
recombination velocities did not always go to their lower bounds; suggesting the
model used in [1.9] predicts greater efficiencies at higher recombination velocities,
or that there are convergence difficulties with the optimization algorithm used in
{1.9]. In this work, recombination velocities are not included as decision variables
in the optimization because they display a monotonic relationship with respect to
efficiency and will only converge to their lower bound. Including them in the
optimization simply increases the number of variables, hence increasing the numer-
ical effort required to complete an optimization. The method used to investigate
the effects of recombination velocities, which are classified as technology variables
in this work, is discussed more thoroughly in section 3.6 .

The results published in [1.9] did not constitute a comprehensive analysis of
solar cell designs. Rather, the results of a few optimizations were given. The
optimizations showed large increases in efficiency from the initial to the final point
of the optimization. However, the optimizations were initiated from very poor
designs (efficiency £ 5 %). This tended to obscure the main point of the authors
(i.e., the benefit of using an optimization in the design processes), since such
designs would probably never be proposed in the first place. Also, the authors
made no mention of the possibility of local maximums or any references to the
concavity of the efficiency surface.

The authors suggested the development of better analytical models and
strongly convergent optimization algorithms as goals for future research.

In this work, a strongly convergent optimization algorithm is developed
specifically for use with CPU intensive simulations. However, deviating from the
suggestions of Chen and Wu, the model used in this work is a one dimensional
numerical model. This work is unique among the studies completed to date (i.e.,
this work would be classified in the lower right comer of table 2.1). The computa-
tional effort required to optimize a numerical model is not prohibitive if the model
is properly adapted for use with an optimization algorithm. The use of finite
difference and finite element models directly with optimization algorithms is well
established in the fields of mechanical and civil engineering. Such work has been
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particularly common in the area of structural design (see [2.2] for a historical sur-
vey). The problem of optimizing solar cell design is particularly well suited to
such techniques due to the numerical solution methods used to solve the
differential equations and the small number of decision variables in the optimiza-
tion.

This work will stress the use of the optimization algorithm coupled with a one
dimensional numerical model as a tool for doing a comprehensive analysis of sili-
con solar cell designs. A sensitivity analysis will be provided for the solutions
found that will point out the possible pitfalls of using an optimization with a simu-
lation program (e.g., nonconcavity of efficiency which could lead to the optimiza-
tion converging to a local maximum that is not the global maximum).

2.3 Overview of Method of Solution

Figure 2.2 shows an overview of the optimization algorithm designed for use
with SCAP1D and similar cpu intensive simulations. The basic components of the
algorithm are the calculation of the numerical approximation of the gradient,
definition of the search direction, implementation of the constraints, solution of the
one dimensional subproblem, and test for convergence.

The efficiency associated with the initial guess for the optimal solution is cal-
culated first. The optimization algorithm passes the decision vector (the vector x =
[Dy, Dg, Dy, X, Xy, X11)' to SCAPID. SCAPID then calculates the efficiency
associated with the decision vector and passes it back to the optimization code.
The SCAP1D model and how it is used to calculate the efficiency of a solar cell is
described in the next chapter.

The optimization algorithm then calculates the numerical approximation of the
n-dimensional gradient vector (Veff), where n is the number of decision variables
(6 in P1 and 4 in P2). This is done by offsetting each component of the decision
vector one at a time and re-calculating the efficiency to determine the effect of
each component. For example, the first component of the gradient is

Veff, = eff( Do + ADg, Xy, Ds.meu:;))-eff( Do, X1, Dg, Xe» Dp, X1) ’ 2.1)
0

!Scalar quantities are represented by normal type (e.g., Dy), vectors by lower case bold type
(e.2., X), a particular component of a vector by the vector symbol in normal type and a sub-
script denoting the component (e.g., X = first component of vector X), and matrices by upper
case bold type (e.g., H).
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where ADy is the offset in the front surface doping concentration. The above pro-
cedure is repeated for each of the decision variables. The result is a numerical
approximation of Veff.

The calculation of the numerical gradient is significantly complicated by the
fact that the efficiency is a result of a complex numerical process which requires
the use of iterative algorithms. This concern will be addressed in chapter 4. The
calculation of the gradient has significant impact on the reliability of the optimiza-
tion code and the number of function evaluations required for an optimization to
converge (e.g., it is within the iterative loop of the optimization method outlined in
figure 2.2). For these reasons, the actual method used is more involved than equa-
tion 2.1 and is completely described in chapter 5.

Unlike the initial call to SCAPID, it is not necessary to execute the model in
its entirety to calculate the efficiency for subsequent calls to SCAP1D (as illus-
trated in figure 2.2). It is possible to avoid calculations that are not necessary to
determine the efficiency by using the results of previous objective function evalua-
tions to initiate the iterative solution techniques employed in SCAP1D. This
results in significant savings in computational effort, and the methods used are dis-
cussed in chapter 4.

Once VefT has been calculated, it is possible to define a search direction to be
used in solving the one dimensional subproblem. The direction of search, d, is

d =-H Veff . (2.2)

H is the approximation to the inverse Hessian matrix (inverse of the matrix of
second partial derivatives). H is initiated as the negative of the identity matrix, so
that the first search direction is simply VefT (steepest ascent direction). For subse-
quent search directions (note iterative loop in figure 2.2), the matrix H is updated
to approximate the inverse Hessian by using the quasi-Newton condition [2.3, 2.4},

.Yk = Hk+1 sk , (2'3)

where 8% = x®*! - xX and y¥ = Veff¥*! — VeffX, The quasi-Newton condition
forces a condition that would be satisfied by a quadratic function on the inverse
Hessian approximation. The solution of (2.3) for H is not unique, so an updating
formula is used. By enforcing the condition (2.3) at each iteration (i.e., by updat-
ing the estimate H¥ at each iteration), a local quadratic approximation is built up.
Numerous update formulas exist, and any member of the Broyden family [2.5] of
updates can be chosen in the code. The BFGS formula [2.5-2.8],

Hil = H + 1+7‘HJ 58' |8y'H+Hyy'
Sty ) &'y Y'Y

(2.4)
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(the superscript k and the subscript BFGS are suppressed on the right side), has
been the update formula most often used for the application to be studied in this
work, because the line search algorithm to be described is not an exact line search
[2.9]. The vector -H Veff represents the offset from the current point to the
optimal point of the local quadratic approximation. This is seen by solving the
necessary conditions for a maximum (gradient = 0) of the truncated Taylor series,

eff(x+Ax) = q(Ax) = eff(x) + %2 Ax' B Ax + Veff' Ax . (2.5)

H = B!, Since variable metric (quasi-Newton) methods take into account second
order information, they are more successful than always moving in the direction
VefT (steepest ascent direction) which makes use of only first order information.

It is necessary to insure that the search direction is feasible and that the one
dimensional maximization along the search direction remains feasible (this defines
a maximum step Size Qy,,). The methods used to accomplish this are detailed in
chapter 5.

Once the feasible search direction and a maximum feasible step size in that
direction have been defined, it is possible to solve the one dimensional optimiza-
tion problem,

maximize eff( x +a d ) . (2.6)
0s asan,,,

The n-dimensional optimization is solved by iteratively solving the one dimensional
subproblem. Hence, the one dimensional optimization routine is a very important
component of the optimization code. The routine used in this work is based on
restricted polynomial approximation and is described in detail in chapter 5.

The code iterates by solving for the numerical gradient at the best point found
by the one dimensional optimization routine, defining a direction of search, and
solving the one dimensional subproblem. A number of criteria are used to test for
convergence, and these are defined in chapter 5. Once again, it is stressed that the
problem is solved more than one time, so that the algorithm outlined above is used
on a number of occasions.
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3 The Silicon Solar Cell Model - SCAP1D

The efficiency associated with different solar cell designs can be calculated
using the Solar Cell Analysis Program in 1 Dimension (SCAP1D). In figure 2.2,
SCAPI1D is shown as a black box; which, given the decision vector, calculates the
associated efficiency. This chapter will describe the block box.

SCAPI1D uses finite difference methods to solve the differential equations
which, along with several relations from the physics of semiconductors, describe
mathematically the performance of a solar cell. The differential equations to be
solved, the coefficients of the equations, and the boundary conditions of the equa-
tions will be described in detail. The method used to solve the equations and how
the solution is used to calculate the performance of a solar cell will be described.
The variables (inputs to SCAP1D) will be discussed, and the manner in which the
variables are treated in the analysis will be presented.

3.1 The Differential Equations

In general, models (numerical as well as analytic) involve assumptions that
allow the physical process to be described mathematically. The equations given in
this section are valid only if certain assumptions used in their definition hold for
the solar cell to be simulated. The assumptions must be completely understood
and properly implemented in the optimization for valid results to be obtained. This

section will present the equations in a manner that emphasizes the considerations
raised above.

The equations that form the basis of numerical methods for modeling sem-
iconductor devices can be derived from Maxwell’s equations, several relations from
the physics of semiconductors, and several simplifying assumptions (e.g., see
[3.1]). The resulting system of equations includes Poisson’s equation and electron
and hole continuity equations. Poisson’s equation is:

v2v=-‘el(n—p+ND-NA) G3.1)
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where,
V = voltage
q = electronic charge constant (1.602 x 10719 )
€ = permittivity of the material
n = electron concentration
p = hole concentration
Np = concentration of ionized donor atoms
N, = concentration of ionized acceptor atoms.

Poisson’s equation models the potential difference that is a result of the variation in
charge distribution through the device. The writing of Poisson’s equation has
necessitated the use of several commonly accepted assumptions (e.g., homogeneity
of permittivity).

The continuity equation is written as two equations by considering the holes
and electrons separately. The resulting equations are:

Vl,=q(R-G) (3.2a)

Vl,=—q(R-G) (3.2b)

where,
J, = electron current density
Jp = hole current density
R = Recombination rate
G = Generation rate.

Because we are interested in only steady state results (no transients), the equations
above do not include terms that involve differentiation with respect to time.
Hence, the interpretation of the continuity equations becomes equivalent to the
principle of conservation of charge.

The terms J; and Jp used in (3.2a) and (3.2b) describe the transport of carriers
in a semiconductor. The derivation of equations to describe carrier transport in
semiconductors is quite complex and involves many of the most important assump-
tions to be made. The derivation of the carrier transport equations used in
SCAPID is presented in detail in [3.2). The objective here is to present the equa-
tions in a manner that illustrates the main assumptions that must be invoked for
valid implementation. This will be done by writing the carrier transport equations
in several intermediate forms. The basic carrier transport equations are given
below:
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Jo=—quanVV +qD, Vn (3.3a)

J,b=-qu,pVV-qD, Vp (3.3b)

where,
D, = diffusion coefficient for electrons
D, = diffusion coefficient for holes
i, = mobility of electrons
My, = mobility of holes.

These equations illustrate the drift and diffusion components of carrier transport.
Many assumptions have been made to write the equations in the above form.
Three of the most important assumptions are:

(1) Valid only for very lightly doped (or intrinsic) semiconductors (i.e., does not
take into account positional variations in the band gap).

(2) Effects of degeneracy have been ignored.
(3) Parabolic energy bands are assumed.

The first assumption implies that the equations will not properly treat
moderate heavy doping effects. This omission can be avoided by including a term
involving the intrinsic carrier concentration which is a measurable parameter (e.g.,
[3.3-3.5]). The result is:

Jo=qu,nVV+qD, Vn-p,nk TV(In(n)) (3.4a)

Jb==qu,pVV-qD, Vp-pu,pk T V(In (n;)) (3.4b)

n;. = effective intrinsic carrier concentration.

The last term in the equations can be thought of as a quasi-electric field that affects
the transport of carriers. It accounts for positional variations in the bandgap due to
doping. This equation still contains two important assumptions related to heavily
doped semiconductors. First, the equation is not valid for degenerate semiconduc-
tors because Boltzmann statistics are used in the derivation. The use of Boltzmann
statistics implies that the Fermi energy for electrons, Eg, (holes, Eg,,) has been
assumed to be sufficiently below (above) the conduction (valence) band edge, E,
(E,). This is mathematically stated as the relation

(Egp - E. ) /kT « =1, or for holes (Ev—Efp)/kT<_1 . 3.5
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This condition is not true in heavily (degenerately) doped semiconductors. Second,
the use of the intrinsic concentration implies knowledge of the band structure. The
band structure, however, is not well characterized in heavily doped semiconductors.

The equations can be rewritten by defining the reduction in the bandgap AE,.

AE; is related to the effective intrinsic carrier concentration by the equation
niez = ni% e( AE, / XT) . (3.6)
The equations can be further generalized with the addition of an asymmetry factor.
The asymmetry factor, A, is defined in terms of the electron affinity, Ay

(A=Ay/ AI:‘.8 ), and allows for unequal shifts in the band edges of the valence
and conduction bands. The resulting equations are :

+qD, Vn (3.7a)

AE
JLh=—qu,n [V(V+A—q&)

AE,
Lh=—qup V(V_(I_A)T) -qD, Vp . (3.7b)

Some authors have proceeded from these equations by making use of the rigid
band approximation for heavily doped silicon and including Fermi-Dirac statistics
directly into the equation. Adler [3.6-3.8] contends that using an experimently
measured AE; correctly accounts for Fermi-Dirac statistics and that the choice of
the asymmetry factor does not affect some aspects of the model. This approach
was used by Lundstrom [3.2] in deriving the transport equations that are imple-
mented in SCAP1D. No specific shape is assumed for the bands, only the presence
of sharp mobility edges is assumed. The terms Ay and AE; account for the posi-
tion dependence of the band edges (i.e., the rigid band effect). In [3.2], Lundstrom
introduces two new terms, ©, and ®p, that account for both the modified band
shape (density-of-states effect) and the influence of Fermi-Dirac statistics (these
effects are hard to separate in degenerately doped semiconductors). The resulting
equations are:
+qD, Vn (3.8a)

Ag
Jh=—quyn V(V+7—q-)

A
Jp=-qupp[V(V—(l—v)—qg-)]—quVp (3.8b)
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where,

A = [A58+e,,+@p] , (3.92)
and
Ay +©
y= 22" (3.9b)
AS

4 is the effective gap shrinkage, and 7y is the effective asymmetry factor. It is
argued that the use of experimental values for A; and Y correctly accounts for the
effects of heavy doping [3.2, 3.6-3.8]. Therefore, no explicit correction for Fermi-
Dirac statistics needs to be included in (3.8a) and (3.8b). The Boltzmann type
structure, which is convenient for numerical models, is retained.

Procedures for obtaining electrical measurements of A; and Y are provided in
[3.2]. A, does not necessarily equal the actual reduction in the bandgap. Equality
would only exist if there were no change in the shape of the bands and the use of
Boltzmann statistics were justified (©,=©,=0). The effective bandgap is
related to the effective intrinsic concentration (equilibrium np product) by the equa-
tion below (generalization of equation 3.6).

02 = n2 el &/ T) (3.10)

The interpretation of effective gap shrinkage is supported by the differences
reported between electrical measurements and optical measurements (or theoretical
predictions) of the bandgap in heavily doped semiconductors [3.6-3.10]. Electrical
measurements are related to A,, while optical measurements and theoretical predic-
tions result in AE;. No measurements have been made of the effective asymmetry
factor. However, it has been argued in [3.2, 3.6-3.8] that the carrier concentra-
tions, minority carrier current densities, and current-voltage characteristics of typi-
cal heavily doped solar cells are not affected by the choice of y. Without ¥ it is
not possible to correctly model all aspects of a solar cell (e.g., Y must be known to
determine the built in voltage).

Equations (3.8a) and (3.8b) substituted into (3.2a) and (3.2b) along with (3.1)
are the equations used in SCAPID. Several assumptions are required for the vali-
dity of these equations. The most important assumptions are:

(1) Complete ionization of the dopants is assumed. This assumption defines the
terms Np and N, to be equal to the doping concentrations.
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(2) The heavily doped regions of the device are assumed to be quasi-neutral and
in low injection, so that the majority carrier concentration is approximately
equal to the doping density.

(3) The parameters Ag and Y are assumed to be functions of the carrier concentra-
tions.

(4) The heavy doping parameters A; and ¥ do not change when the device is not
in equilibrium (related to the low injection assumption above).

These assumptions must be carefully taken into account to insure that valid results
are obtained from the model.

3.2 The Coefficients of the Equations

In the previous section, to simplify the presentation of the equations, the
dependence of the coefficients on other variables was suppressed (i.c., they were
presented as constants). Each of the coefficients, however, is a function of one or
more variables. In this section, each of the coefficients will be mathematically
defined. Since SCAPID is a one dimensional code, the V used in presenting the

equations simplifies to de— The independent variable of the differential equations,

x, is the distance into the solar cell perpendicular to and measured from the front
surface.

It has already been indicated that ¥ can be chosen arbitrarily. SCAP1D allows
Y to be defined as a function of x. However, since no reliable measurements of
exist, Y will be defined as a constant in this work. In accordance with the assump-
tions given above, the ionized doping concentrations (Np and N,) are defined to be
equal to the doping concentrations which are functions of x (e.g., see figure 2.1).

The terms G, R, W, My, and A, are all defined by equations that include terms
that fit experimental data. A review of the literature shows a profusion of equa-
tions and/or different constants to be used with the same equations [3.1]. To com-
plicate matters, it has been argued [3.6] that the differences between models can
often be traced back to the modeling of the above parameters, particularly Ag. For
this reason, the equations that describe each of the above parameters will be given.
References are given for the papers that derive the equations and/or define the con-
stants that are used in this work.

For a solar cell, the generation rate for electron hole pairs (G in equations
3.2a and 3.2b) is modeled by the equation:

Gx)=[(1-T)¢ae™dr (3.11)
0
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where,
A = wavelength
¢ = incident flux.

The term I takes into account both reflection at the surface and shadowing losses
(an approximation for a 1-D model).- a, the absorption coefficient for silicon, is
taken from a fit of experimental data [3.11]. Equation 3.11 is the mtegrated or
accumulated, generation rate at a given distance x into the cell.

Figure 3.1 is a graph of equation 3.11 with T equal to 0.07 (this is the value
that will be used in chapter 6) at a temperature of 300 K. The variable x in equa-
tion 3.11 is expressed as the optical path length, since if the light is reflected or
refracted the optical path will no longer be equal to the position in the device
(referred to in this work as x). Figure 3.2 is a plot of the percentage of the pho-
tons of energy greater than the bandgap of silicon, = 1.1 eV at 300 K, absorbed
versus the optical path length. The majority of the incident photons of energy
greater than 1.1 eV are absorbed very rapidly. Over 60% are absorbed by 5 um,
and over 70% are absorbed by 10 pum.

A graph of the percentage of the incident energy absorbed versus the optical
path length would differ from figure 3.2. Since high energy (> 1.1 eV) electrons
are more quickly absorbed in silicon, over 99% of the incident energy is absorbed
by 300 um. However, only 95% of the total number of photons of energy greater
than 1.1 eV are absorbed by 300 um. It takes an optical path of over 1000 pm to
absorb 99% of the photons of energy greater than 1.1 eV. This is because the
absorption coefficient of silicon for photons just greater than the bandgap energy is
relatively small in magnitude. It is the percentage of photons greater than 1.1 eV
that are absorbed, not the percentage of the incident energy, that is of primary
importance in solar cells.

The recombination rate (R in equations 3.2a and 3.2b) is the sum of the
Auger (AU) and singe-level Shockley-Read-Hall (SRH) processes. The Auger pro-
cess dominates in heavily doped silicon due to a squared dependence on the doping
concentration (all dopants are considered ionized, and the recombination rates are a
function of the carrier densities). The equation for Auger recombination is:

RAVU=(A,n+A,p)(np-ng?) . (3.12)
The coefficients A, and A, (Auger capture coefficients) are taken from measure-

ments by Dziewior and Schmid [3.12]. If Boltzmann statistics and a single trap
level are assumed, the equation for SRH [3.13, 3.14] recombination is:
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RSRH — (np-m’)
tpk(n+n1)+1:nk(p+p1)

(3.13)

The concentrations n; and p, relate the emission and capture rates at equilibrium
and are a function of the trap level (middle of the bandgap in SCAP1D). The
effective intrinsic concentration n;. is defined in equation 3.10. The terms T, and
T, represent the reciprocals of the capture rates per single carrier. The capture
rates are defined as the product of the capture cross section, the thermal velocity,
and the concentration of the traps. Experimental evidence suggests that at high
doping concentrations, the trap concentration increases. Therefore, it is necessary
to make the lifetimes in equation 3.13 doping dependent. The doping dependence
is modeled using the equations,

= To0 (3.14a)
Tk L Mo+ N, ‘
o+ —e————
. Zyn
T,
PO
= , 3.14b
Tk ., No+Na (3.140)
4 r——
Zyp

which were derived from experimental data. The parameters Ty and Ty are the
reciprocal capture rates (lifetimes) for lightly doped silicon. They are input to
SCAPID and describe the quality of the silicon wafer used to build the solar cell.
The parameters Zy, and Z,, are defined as 7.1 x 10%5 {3.15]. The total recombina-
tion is the sum of RAU and RSRH R = RSRH 4 RAU (gurface recombination is
modeled using the boundary conditions).

To aid the engineer in the physical understanding of the device, recombination
rates are often related to the minority carrier lifetime in the literature. At equili-
brium, the generation and recombination rates associated with the physical
phenomenon described by equations 3.12 and 3.13 must balance (i.e., n p = n;.%, so
there is no net recombination). The lifetime is calculated by considering small
deviations from equilibrium in the electron and hole concentrations (i.e.,
n =n, +dn and p = p. + Ap). For example, in a p-type material the lifetime asso-
ciated with the Auger process is calculated as follows:

TAuger = 4n (3.15a)

(opn+0o,p)(np-m?)
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An

- (3.15b)
(agn+o,p)[(ne+An)(p.+4p) =D

]

Using the fact that n;. = n, P,.
An

= (3.15¢)
(pn+a,p)(Anp,—Apn)

Since the material is p-type, p > n, and the only term of importance involves P
If low injection is assumed, p = N, (i.c., low injection assumes that the majority
carrier concentration is not raised significantly above the doping concentration).

1
o Ny?
Identical arguments can be used to determine that the lifetime associted with SRH
recombination is Tgry = Ty, Where Ty is defined in equation 3.14a above. The

combined lifetime is the reciprocal sum of the lifetimes associated with each pro-
cess (since the recombination rates are additive).

1 1 3.17)

T 1Augcr TSRH

Tauger = 3.16)

Figure 3.3 shows a graph of lifetime versus the net doping concentration, N
(N = N, in the bulk of a n-p solar cell). The graphs are of equations 3.14a (SRH),
3.16 (Auger), and 3.17 (combined). The position of the graph for tsgry is moved
vertically depending on the value assumed for T,y (1 ms is used in figure 3.3). As
mentioned above, T, is related to the quality of the substrate. The Auger lifetime
is more fundamental and is not affected by the quality of the substrate. Figure 3.3
clearly shows the deterioration of lifetime (i.e., increase in recombination rates)
that occurs when the doping concentration is increased. At light doping, the life-
time is dominated by tsry. While at heavy doping, Tayger dominates.

Carrier mobility is modeled as the combination of scattering due to lattice
vibrations and ionized impurities. Lattice scattering (p.nljp) is calculated using the
power formula:

L I

= 1) Mmax

Hy' = Hy [ 3 ] (3.18a)
L max I

B = 3 (3.18b)
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The constants ™ and @, are taken from [3.16], and upm" and o, are taken from
[3.17). The model for ionized impurity scattering (u,{p) is based on the equation
due to Caughey and Thomas [3.17]. The constants used in the equation have been
updated by many authors, for holes [3.18] is used and for electrons [3.19]. In
SCAPID, the equation has been changed to include a temperature dependence
taken from [3.20]. The combined mobility is determined by the Mathiessen rule,

: L + : . (3.19)

Mpa  Hpa  Hpa
All the results in this report were calculated at room temperature (300 K).
Therefore, equation 3.19 is used to model the decrease in mobility that is experi-
mently observed with increased doping concentration. The mobility as a function
of the net doping concentration (N = |Np = N,| ) is graphed for both electrons
and holes in figure 3.4. The reciprocal sum in equation 3.19 implies that the
highest value achievable for electron mobility is ug (™" for holes).

The diffusion coefficients D, and D,, which appear in equations 3.8a and
3.8b, are related to the mobility by the Einstein relations.

D,:-‘-‘alp,, and Dp=%up (3.20)
In the [3.2], the generalized Einstein relations are used. However, the relations
given above can be used to approximate an important physical parameter, the
diffusion length. In a p-type material, the equation for the diffusion length,

Ly=+T, D, . (3.21)

is completely defined by substituting in equations 3.17, 3.19, and 3.20. Figure 3.5
is a graph of the diffusion length as a function of the net doping concentration for
T,0 = 1 ms (same value used in figure 3.3). The diffusion length decreases rapidly
as the doping concentration increases, since both the mobility and the lifetime
decrease with increasing doping concentration.

Bandgap narrowing is calculated using the empirical equation due to Slot-
boom and DeGraf [3.21-3.23],

Ag =V, [F+(F+C)%*] F=1n§-N(-)- : 322)

In the equation above, N is the net doping concentration ( |[Np = N, | ), and the
values of the constants Vy, Ny, and C, which are determined from experimental
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data, are taken from [3.23]. In figure 3.6, A; is graphed versus the log of the net
doping concentrations (Atoms/cm>). Bandgap narrowing is not a factor for doping

concentrations less than 106,

3.3 Boundary Conditions

To completely specify the differential equations, it is necessary to define the
boundary conditions. Conditions are required at x=0 and x=L for V, n, and p or
their derivatives. The boundary conditions on V were obtained by requiring that
the semiconductor be space charge neutral at the contacts. This condition is valid
if the contacts are ohmic, and is valid for nonohmic contacts if it is assumed the
semiconductor is heavily doped at the contacts. Hence, Vo = Vi, and
VL = Vieq = Vbias - Vbias is the forward voltage bias across the device. The sub-
script eq (equilibrium) refers to the conditions in the device when there is no
incident radiation.

The boundary conditions for the carrier concentrations are set equal to their
equilibrium values if the contacts are specified as ohmic (equivalent to infinite sur-
face recombination velocity). If the contacts are specified in terms of finite recom-
bination velocities, the majority concentrations are still set equal to their equili-
brium values (assumes heavy doping at the contacts and low injection), but for the
minority carriers a current is defined:

Jpb=2S(n- N ) (3.23a)
if p-type at the contact, and
Jp=2S(p—Deg) (3.23b)

if n-type at the contact. The transport equations can then be substituted into the
above equations to determine the minority carrier concentrations at the contacts. S¢
and S, (units of cm/s), which are inputs to the code, are used to differentiate
between the front and back surfaces. The boundary conditions of an actual device
are different for the cell surface that is located under the metallic grid and the sur-
face that is not located under the metallic grid. Since the code is one dimensional,
the recombination velocities are effective recombination velocities and represent the
net effect of both areas.

3.4 Solving the Differential Equations

In the last three sections, the equations used in SCAP1D to describe the phy-
sics of a solar cell have been presented. The resulting system of equations is a set
of three coupled, nonlinear, second order, ordinary differential equations. The
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solution to the equations is expressed as the values of voltage (V), electron carrier
concentration (n), and hole carrier concentration (p) as a function of the indepen-
dent variable x. It is not possible to solve these equations in their most general
form using analytical methods. Hence, the differential equations are discretized
using finite difference methods to transform them into a system of algebraic equa-
tions. Numerical procedures can then be used to solve the system of algebraic
equations. The result is a discrete approximation to the analytic solution of the
differential equations. In this section, the method used in SCAP1D to numerically
solve the equations is described.

Because the model is one dimensional, the differential operators in equations
3.1, 3.2, and 3.8 simplify to differentiation with respect to x. The variable x
denotes the position in the device measured from the front surface to the back sur-
face. The equations are normalized to scale the variables and to simplify the cal-
culations when solving the equations numerically. The resulting system of equa-
tions is:
2

4 Ven-p+Np-N, (3.24a)
dx?
S =(G-R 3.24b
$5,=(G-R) (3.24b)
41 -_(G-R) (3.24¢)
dx °®
==ty [P (V= (y-1)Vg)-<p (3.244)
P dx dx
I, = d v 1)V d 3.24e
n-'ﬂpLPa( -(y-1) G)‘KP- (3.24¢)

where Vg = A /KT.

The above differential equations are discretized by using finite difference tech-
niques. The conventional difference approximation to the second derivative is used
for Poisson’s equation, while the technique of Scharfetter-Gummel [3.24] is used to
discretize the current relations. A variably spaced mesh is used to place nodes
throughout the device. A variable mesh is required because the solution of the
semiconductor equations exhibit a smooth behavior in some regions (e.g., the bulk
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of the device), whereas in others it varies rapidly (e.g., at the front junction). All
results described in this report were calculated using 250 nodes. As a result of the
finite difference transformation, at each node (j) a nonlinear algebraic equation is
defined for Poison’s equation (V) and the hole (p) and electron (n) current rela-
tions,

fvl = f( Vj-l’ p], nj, VJ’ Vj+1 ) = 0 (3.25)
fp’ = f( Pj—h Vj-—l’ pp nj: Vj! pj+l’ vj+l ) =0 (326)
fn’ = f( nj—l’ Vj—l’ p]’ nj, Vj’ nj,,,l, Vj+1 ) =0 . (3.27)

This is done for each of the 250 nodes used, resulting in a system of 750 nonlinear
algebraic equations.

Let u be the vector [p;, 0y, Vi, .. , P2so> N250> Vasol, and f(u) be the associ-
ated vector whose components are the values of the left hand side of equations
3.25-3.27 at each node (disregarding the equality to zero). Just as one could use
the Newton algorithm to determine the root of a single nonlinear algebraic equa-
tion, a system of nonlinear algebraic equations can be solved by using a Newton-
like method. Analogous to the one dimensional case, the Newton-like method for
a system of equations requires an initial estimate of the roots of the equations, u?
(the values of V, n, p at each of the 250 nodes). The vector f(u% represents the
error associated with the initial estimate in equations 3.25-3.27. The error can be
used along with the Jacobian matrix (analogous to the derivative for the one
dimensional case) of the system of equations to define a correction term that can be
added to u® to get an improved estimate of the solution u'.

The correction vector is defined as follows,
K@) A u¥*! = ~f(u¥) , (3.28)

and is solved for by inverting the Jacobian matrix K (i.e., solving the system of
linear equations). The correction vector A u**! is added to the vector u*. The
result is a better estimate, u**!, to the solution vector u for which the equality to
zero in equations 3.25-3.27 holds. The process iterates until the correction vector
and the values of the components of f are deemed small enough to imply conver-
gence.

The Jacobian matrix, K takes on the special form of a band matrix of
bandwidth nine because the equations at each node are only a function of the
values of n, p, and V at that node and the two adjacent nodes. Since K is a very
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sparse matrix, solving the system of linear equations associated with (3.28) is
simplified. Also, the solution strategy implemented in the code may use the same
Jacobian for several iterations. Hence, the inversion required to solve 3.28 may
not have to be done every iteration. However, due to the large dimension (750 for
250 nodes) and the fact that the linear equations 3.28 must be solved iteratively to
obtain the solution of the nonlinear equations 3.25-3.27, the solution procedure
requires considerable effort.

The basic Newton algorithm is modified in [3.2] to improve the convergence
properties (correct the overshoot phenomenon) and expand the region of conver-
gence for the initial guess. It is still the property of the algorithm, however, that
the initial guess must be sufficiently close to the answer for convergence to be
achieved (similar to the one dimensional Newton algorithm). This point is crucial
to the method used to adapt SCAP1D to an optimization environment (described in
chapter 4).

3.5 Simulating Solar Cell Performance

The method of obtaining a numerical solution of the differential equations has
been given. How that solution is used to simulate the performance of a solar cell
and to calculate the efficiency will now be presented. The first task is to arrive at
an initial estimate of the values of V, n, and p for some mode of device operation.
This is done by considering the solutions to the equations during equilibrium (the
state of the device when there is no illumination or other external stimuli). Also,
the equilibrium solution is required to define the boundary conditions to the none-
quilibrium (illuminated) problem. In equilibrium, the current densities J, and I
are equal to zero. This simplifies the set of equations 3.24 to the following,
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—3Vea = xP (Vg + YVg) —exp(—veq = (Y-1) V) =Np+ Ny . (329)

Although this equation must also be solved by an iterative Newton-type numerical
algorithm, a convergent initial solution can be defined by assuming space charge
equilibrium throughout the device. The resulting equation,

d2
Ez_veq =0 , (3.30)
has an analytic solution that can be used to calculate the voltage at each node.

Once the equilibrium voltage has been calculated, the equilibrium hole and
electron carrier concentrations can be solved for at each mesh point from an ana-
lytic equation. The actual implementation of the equilibrium problem in SCAP1D
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is more complex due to the need to define a variably spaced mesh that will result
in an accurate solution of the equations. The considerations for the spacing of the
mesh points are that the generation rate (for monochromatic illumination) between
nodes does not significantly change, the distances between adjacent nodes does not
change significantly, and the potential (V,,) does not change significantly between
any two nodes. An initial estimate for the mesh is automatically defined by the
code using fewer nodes than requested in the input (in this work 250). The equili-
brium problem is solved several times, each time increasing the number of nodes
and/or redistributing the nodes, until all the conditions above are satisfied and the
desired number of nodes is reached.

The solution to the equilibrium problem provides an initial estimate close
enough to solve the nonequilibrium (illuminated) problem for a short circuit condi-
tion (Vs = 0). The system of 750 nonlinear algebraic equations is then solved to
determine the values of n, p, and V at each node by the Newton-like iterative algo-
rithm described above. The bias can then be increased to 0.1 volt, with the solu-
tion vectors of n, p, and V from the short circuit problem being used as the initial
estimate to the solution. Once again, the system of nonlinear equations is solved.
This process continues, increasing the bias voltage by 0.1 volt and re-solving the
system of nonlinear equations, until a negative or very small current results (the
voltage offset is decreased if the code senses it is close to the crossover from posi-
tive to negative current). A current of zero would result if Vy;,; were set equal to
the open circuit voltage (V) of the cell. Negative currents represent a Vi,
greater than V.. It may take as many as nine voltage offsets for Vy;,s to be
increased to the vicinity of V.. Then, an iterative linear interpolation algorithm is
used to solve for the open circuit voltage to within a specified tolerance (current
sufficiently close to zero). The algorithm is iterative and in general several biases
must be solved for (i.e., the system of nonlinear equations must be solved several
times) before convergence to V. is reached.

Changing V\, is interpreted as changing the resistance of the load attached to
the solar cell. There is a load resistance that results in the maximum power being
transferred to the load. The resulting Vy;, is referred to as Vi, the maximum
power voltage. A good estimate of V, is calculated by using V. and Iy, which
have already been determined, in the ideal diode equation. Then a linear interpola-
tion algorithm is used to converge to V. This requires solving the system of
nonlinear equations for several bias voltages until convergence to Vp, is achieved.

In following the above procedure, SCAP1D has completely defined the I-V
curve associated with the solar cell. Figure 3.7 shows an example of an I-V curve.
Vmp is the voltage associated with the largest area rectangle under the I-V curve
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(in the coordinates of current and voltage, area is equal to power). The efficiency
of the device is calculated by dividing the power generated at Vi, by the power
(in the form of illumination) incident on the cell.

3.6 The Variables

In the previous sections, it was seen that the efficiency of a solar cell can be
calculated by solving the differential equations at a voltage bias equal to the max-
imum power voltage. Different solar cell designs are defined by changing the
coefficients and the boundary conditions of the differential equations. Changing
the coefficients and/or the boundary conditions of the equations affects the solution
of the equations at all the biases (including Vmp) and the the value of Vmp, hence
affecting the efficiency. The coefficients of the equations were seen to be a func-
tion of several variables.

The equations are completely defined by specifying the following inputs to the
model; the operating temperature, the incident illumination, the shadowing and
reflection factor, the SRH lifetimes for lightly doped silicon (Tt and Ty), the
impurity concentration (as a function of x), the thickness of the device, and the
effective surface recombination velocities (S¢ and Sy,). The operating temperature
(300 K) and the incident illumination (AM1.5) are chosen in accordance with a
standard established so that the results of different studies can be compared [3.25].
The shadowing and reflection factor is defined in this work as 7%. It represents
the percent of the incoming illumination that is not available for power generation
due to shadowing of the top contact grid and reflection at the front surface of the
cell.

The doping concentration and the cell thickness are controllable to the extent
that they can be considered decision or design variables in the optimization. In
designing a silicon solar cell, the design engineer is able to specify these variables
with a reasonable degree of accuracy within the bounds given in the problem state-
ment P1.

The variables Ty, Tpo, Sf, and Sy are not completely controllable. They are
closely related to the fabrication process and level of technology used to build the
cell. Hence, they will be referred to as technology variables. Since the level of
technology and the fabrication process are fixed during the manufacture of a cell,
the design engineer is not free to specify a desired value for the technology vari-
ables. The effect of the technology variables on efficiency is monotonic regardless
of the values of the other design variables (i.e., increasing lifetimes increases
efficiency and decreasing surface recombination velocities increases efficiency for
any cell design). Since it is known that the technology variables will go to their

39




more favorable bound, including them in an optimization provides no useful infor-
mation, while increasing the computational effort required to complete an optimiza-
tion. The level of technology and fabrication processes may change in the future,
so the effects of such variables should be investigated. Since technology variables
should not be included in the optimization, they can only be investigated parametri-
cally while re-optimizing the cell design. The re-optimization of the design vari-
ables is critical, since it is desirable to compare only the highest efficiency designs
associated with different levels of technology and/or fabrication processes.

3.7 Summary

The equations used to simulate a solar cell in SCAP1D are a set of three cou-
pled, nonlinear, second order, ordinary differential equations. The solution of the
equations includes the values of the voltage, electron concentration, and hole con-
centration as a function of the independent variable x. The method of solution is
to transform the equations using finite difference methods into a system of non-
linear algebraic equations. A Newton-like algorithm, which requires a good initial
approximation of the solution to converge, can be used to solve the system of non-
linear algebraic equations.

The performance of a solar cell for a given voltage bias is simulated by solv-
ing the system of nonlinear algebraic equations and using the solution to determine
the current and the terminal voltage of the cell. A number of voltage biases, which
define the I-V curve, must be solved for to insure the convergence of the Newton-
like algorithm and to determine the value of the maximum power voltage. The
efficiency is defined by solving the system of nonlinear equations at a bias equal to
the maximum power voltage.

Different solar cells are modeled by changing the values of variables which
affect the coefficients and boundary conditions of the differential equations. The
variables Dy, Dg, Dy, X¢, Xy, and X are decision (design) variables in the optim-
ization. Variables such as the operating temperature and the incident illumination
are chosen to standardize the results. The variables S¢, Sy, T, and T, are
referred to as technology variables and are not included in the optimization. By
solving the optimization problem at different values of the technology variables, it
is possible to compare the best predicted efficiency associated with different
processes and levels of technology. Cell design must be optimized to make such
comparisons valid.
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4 Adapting SCAP1D to an Optimization Environment

To maximize efficiency, the objective function discussed in the problem state-
ment section, it is necessary to couple SCAPID with an optimization code (e.g.,
see figure 2.2). The optimization code requires that the objective function be cal-
culated iteratively until convergence is reached. Hence, a major consideration
when adapting a numerical model like SCAP1D for use in an optimization (i.e.,
iterative) environment is to insure that only the calculations necessary to compute
the objective function are performed. The repetition of unnecessary calculations
will increase the computational burden required to complete an optimization. It is
also important to note that SCAP1D requires the use of iterative algorithms
(Newton-like algorithm and secant algorithm). Hence, each calculation of
efficiency is affected by the convergence tolerances of the iterative algorithms
(referred to henceforth as convergence error) as well as numerical roundoff error,
truncation error, etc. It is important that such sources of error do not significantly
affect the comparison of the efficiencies associated with different values of the
decision variables. This chapter will detail the changes made to adapt SCAP1D to
an optimization environment stressing the above considerations.

4.1 A Strategy for Iteratively Calculating Efficiency

One way to interface SCAPID to an optimization code would be to run
SCAPID in its entirety each time the objective function is requested by the optimi-
zation code. However, because the objective function requires that only the
efficiency be calculated (not the entire I-V curve), it was possible to develop a stra-
tegy that allowed considerable savings in the computational effort required to com-
plete an optimization. As part of this task, an analysis was made to determine the
routines in SCAPID that required significant cpu time. Table 4.1 shows the results
of the analysis for a single execution of SCAPID on a Gould PN9080 minicom-
puter. These times are only representative of an average run. Since SCAPID
involves several iterative processes, the times will be different for runs initiated
with different data. The only activities that require significant amounts of time are
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the solution of the nonequilibrium (illuminated) problem, the solution of the equili-
brium (nonilluminated) problem, and the calculation of the generation rate (i.e.,
how the solar energy is absorbed through the device).

The time spent solving the nonequilibrium problem is accumulated by solving
the system of nonlinear equations described in the previous chapter for a number of
different values of Vy;,s (20 biases were solved for in the run that is the basis of
table 4.1). Since

efficiency = Vi, I g / ( incident power ), 4.1)

the only bias required to determine the efficiency is the maximum power voltage,
Vmp- In table 4.1, the time spent solving the nonequilibrium problem is further
subdivided into the categories of I-V offsets, solving for V., and solving for V.
This suggests that considerable effort can be saved in calculating the efficiency if
an initial estimate can be provided that is within the region of convergence of the
Newton-type algorithm for biases near V,,. In an iterative environment, this esti-
mate is provided by the previous call to SCAPID. Because no estimate of the
solution exists for the initial calculation of the efficiency, the first simulation must
still be executed in its entirety.

Table 4.1 Time Analysis of a Single Execution of SCAP1D

Routine cpu seconds  cpu seconds
Solve Non-Equilibrium Problem 63.12
I-V Offsets 31.51
Solve For V. 9.46
Solve For V, 22.15
Solve Equilibrium Problem 9.34
Calculate Generation Rate 6.86
All Other Routines 0.71

Figure 4.1 shows a flow chart of the strategy that was implemented. First, the
efficiency associated with the initial estimate of the decision variables is calculated
by running SCAPID in its entirety. The values of n, p, and V at each node of the
finite difference mesh (i.e., the solution to equations 3.25-3.27) associated with the
maximum power voltage are saved along with the value of V,,. The optimization
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Calculate the efficiency associated with the initial values of
decision variables (x¥, k=0) (1 call to SCAP1D)

Store the solution at V,,p and the value of Vm

h, ]

Optimization algorithm changes the value of the decision varn-
ables, changing the cell design.

Recalculate the coeficients of the differential equations affected
by the change in the decision variables.

A4

Solve the equilibrium problem (needed for boundary conditions).

Retrieve the stored solution and use as the initial estmate to the
Newton-like algorithm to correct the values of n,p,and V.

l

Solve for the new value of V,, by maximizing power as 2 func-
tion of voltage, which gives the efficiency.

I

fig. 4.1 Iterative Solution Technique
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code then changes the values of the decision variables to increase the efficiency.
The next step actually depends on which decision variables change value. Figure
4.1 shows the simpler case of only the variables associated with the doping con-
centrations changing value (e.g., front surface doping concentration, bulk doping
concentration, and back surface doping concentration). The routines required to
modify the coefficients of the equations to reflect the changes in the decision vari-
ables are exccuted. The parameters R, A;, Wy, and W, are all recalculated because
they are a functions of the doping concentrations (the defining equations are given
in section 3.2). The variably spaced mesh from the previous solution can still be
used (i.e., the value of x associated with the finite difference mesh points does not
change). Therefore, it is not necessary to recalculate the generation rate (G in the
equations 3.25-3.27), since it is only a function of x.

The retention of the variably spaced mesh also simplifies the solution of the
equilibrium problem. The equilibrium problem must be solved, because it is
required to define the boundary conditions for the nonequilibrium problem. An ini-
tial estimate of the new equilibrium solution can be calculated by assuming space
charge equilibium (equation 3.30). The resulting analytic expression is used to
solve for the voltage at each of the 250 nodes. Then, the equilibrium voltage can
be calculated by solving equation (3.29). The equilibrium carrier concentrations
are solved using the same analytic expressions used in a standard run of SCAPI1D.
This defines all the terms needed to calculate the boundary conditions.

The solution vector from the previous nonequilibrium problem is retrieved
from storage and used as the initial estimate to the solution of the nonequilibrium
problem. The previous value of Vp is used as the voltage bias. The equations
3.25-3.27 are re-solved using the Newton-like algorithm to iteratively solve equa-
tion 3.28 (repeated below),

K@u®) A u¥*! = —fu®) . (4.2)

The initial estimate, u® (k=0), is the retrieved solution vector from the previous cal-
culation of efficiency. However, this estimate is no longer correct, because it was
associated with different values of the doping concentrations. The solution of the
nonequilibrium problem results in the solution vector associated with the new
values of the doping concentrations at the Vp associated with the old values of
the doping concentrations. Since the doping concentrations have changed, the new
value of V,, will be different. The new value of Vmp 18 determined by solving the
one dimensional maximization of power as a function of voltage,

maximize Power(V) . 4.3)
v



A one dimensional optimization routine was written to solve the one dimensional
optimization problem expressed in equation 4.3 . The optimization routine replaced
the secant method (based on linear interpolation). The reasons for this and the one
dimensional optimization algorithm developed are discussed in the next section.

Figure 4.2 illustrates the above process. The initial execution of SCAP1D
defines the entire I-V curve (shown as a solid line in figure 4.2). Changing the
doping concentrations defines a new I-V curve (the dotted curve shifted from the
solid curve). By correcting the solution vectors at the old value of V,, a move is
made vertically from the V, of the solid curve to the dotted curve. Maximizing
power as a function of voltage implies a move along the dotted curve to the max-
imum power voltage associated with the dotted curve. The dotted I-V curve is
never completely solved for. Rather, the system of 750 nonlinear equations
described in section 3.4 is only solved for at a few biases in the vicinity of V, (as
depicted in figure 4.2). Power as a function of voltage is plotted for the dotted
curve in figure 43. When the power has been maximized, the value of V,, and
the associated solution vectors are stored if they improve the efficiency. Since the
optimization code is maximizing the efficiency, the solution associated with the
current best point will provide the best initial estimate for the next set of decision
variables defined by the optimization algorithm.

All subsequent calculations of efficiency required by the optimization are done
by making use of the current stored solution. Hence, none of the subsequent I-V
curves is ever completely defined. The above strategy will only work if the esti-
mate that is retrieved from storage is within the region of convergence of the
Newton-like algorithm ‘(equation 4.2) used to solve the system of nonlinear equa-
tions. Originally, SCAPID defined the I-V curve to obtain a voltage offset that
was close to Vp, (within the convergence region of the Newton-like algorithm),
while the cell design remained constant. The convergence region of the Newton-
like algorithm includes 1-V curves associated with similar cell designs. Hence, it is
possible to use the iterative strategy described above. The process iterates until the
optimization converges to the optimal efficiency.

The effects of the above changes were illustrated by timing an optimization
initiated from the same inputs used as a basis for table 4.1 . The time taken for the
initial execution of SCAP1D was subtracted from the time required for the optimi-
zation. The result was divided by the number of function evaluations (minus one)
required for the optimization. The average time to determine the efficiency for
subsequent runs was 9.7 seconds. Time spent in the optimization code is negligi-
ble. This represents a better than 800% reduction when compared to the time to
call SCAP1D and solve it in its entirety. Since all the objective evaluations, except
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the first one, are calculated using the iterative strategy outlined above, the time
required for an optimization is reduced 800%. Since solving problem P1 can
require that the efficiency be calculated many times (10-40, or more depending on
the initial estimates of the decision variables), this represents a tremendous savings
in computational effort. The 800% reduction reflects the fact that the generation
rate did not have to be recalculated, the finite difference mesh did not have to be
changed (simplifying the solution of the equilibrium probiem), the I-V offsets and
V. were not calculated, and the number of bias voltages needed to converge to
Vp Was reduced. The latter was achieved by replacing the secant algorithm origi-
nally used in SCAPID with the one dimensional optimization routine to be
described in the next section.

The value of 9.7 seconds is the average time required to calculate the
efficiency using the iterative strategy. Because the Newton-like algorithm and the
maximization for V,;, depend on the quality of the initial estimate of the solution,
the amount of time required for each efficiency calculation depends on the magni-
tude of the changes in the decision variables. For the Newton-like algorithm, the
initial estimate is the value of n, p, and V at the 250 nodes. For the maximization
of power, the initial estimate is the value of V. If the changes in the decision
variables are small, the time required will be less than 9.7 seconds. This was a
dominant reason for using an optimization algorithm that uses finite difference
approximations of the gradient. To numerically approximate the gradient requires
that the efficiency be calculated after small changes have been made in the decision
variables. Therefore, these efficiency calculations can be done with less effort
because a high quality initial estimate is provided to the iterative algorithms.

If the changes in the decision variables are large, the time required to calcu-
late the efficiency can be significantly more than 9.7 seconds because the iterative
algorithms required to calculate the efficiency will require more time to converge.
If the changes in the decision variables are too large, the Newton-like algorithm
will not converge. This makes it impossible to make use of the stored solution
associated with a previous calculation of efficiency. It would then be necessary to
execute SCAPID in its entirety to determine the efficiency, negating the savings
outlined above. It will be shown in the next section that the one dimensional max-
imization of power as a function of voltage will always converge, so only the
Newton-like algorithm may cause the iterative strategy defined above to fail.

The above description is valid if the doping concentrations are the only vari-
ables changed by the optimization code. A slightly different sequence of opera-
tions must be done if the front junction depth, back junction depth, and/or the cell
thickness (referred to as geometric variables) change value. If any of the
geometric variables changes value, it is necessary to solve the equilibrium probiem
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in its entirety and redefine the finite difference mesh. This must be done to insure
that the mesh covers the entire device and the equations are solved accurately. The
dominating factor determining where the nodes are placed within the device is the
position of the junctions (the mesh is defined by a routine in SCAPID). Due to
the large variations in the solution vector in the vicinity of the junctions (particu-
larly the front junction), an increased number of nodes is required in said regions
to insure that the equations are accurately solved. Redefining the mesh changes the
discretized values of the independent variable x. Hence, it is necessary to recalcu-
late the generation rate as well as the other parameters in the equations (R, 4, Wy,
and ;). Even when one of the geometric variables changes value, the considera-
tions used to determine the positions of the nodes result in the nodes being distri-
buted in a similar manner (similar number on each side of the junction, etc.).
Therefore, the previous solution vector can still be used as an initial estimate even
though the value of the independent variable associated with the solution has
changed. The rest of the solution procedure is identical to that described above.

An optimization was initiated from the run that is a basis of table 4.1 allowing
only the geometric variables to change. The average time for calculating the
efficiency, after the initial call, was 21.8 seconds. This represents a 367% decrease
in time compared to running SCAPI1D in its entirety, but an increase by a factor of
2.2 when compared to the solution procedure for changes in the doping concentra-
tions only.

The code determines which variables have changed value and follows the
appropriate solution procedure. If the solution vector associated with the previous
set of decision variables is not in the region of convergence of the Newton algo-
rithm, SCAPI1D is run in its entirety to determine the efficiency for the new values
of the decision variables. The magnitude of the changes in the decision variables
is considered by the optimization algorithm (see section 5.4). Therefore, rerunning
SCAPID in its entirety is a rare occurrence. The computational savings for com-
pleting an optimization will be between 400% and 800% when compared to exe-

“cuting SCAPID in its entirety for each efficiency calculation.

4.2 Maximizing Power as a Function of Voltage

The region of convergence of the secant algorithm originally used in SCAP1D
was very limited. This was not a problem because the I and V. were solved for
and could be used with the ideal diode equation to provide an excellent estimate of
Vmp- By comparison, the strategy outlined above uses the Vp,, of the solution that
is stored in memory as the initial estimate of the new value of V. Changes in
the decision variables during the optimization could result in the failure of the

secant algorithm to converge. The magnitude of the changes in the decision
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variables that could be solved for using the recursive strategy outlined above is
already limited to the region of convergence of the Newton-like algorithm for
correcting the solution vectors V, n, and p. It is undesirable to further restrict the
magnitude of the changes in the decision variables that can be tolerated before the
iterative strategy described in the previous section fails, making it necessary to
rerun SCAPID in its entirety to calculate the efficiency associated with the new
values of the decision variables.

Although it was possible to enlarge the region of convergence for the secant
algorithm, doing so caused the algorithm to require an excessive number of itera-
tions. Therefore, a one dimensional optimization routine was written and appended
to SCAP1D to solve the problem of maximizing power as a function of voltage,

maximize ( Ve + AV ) Iy . (4.4)

AV

In the above equation, V;"‘,’ is the maximum power voltage for the solution that is
stored; Iy, which is a function of the voltage, is the current; and AV is the change
in the voltage. Since determining the current associated with a bias voltage
requires the solution of the system of 750 nonlinear equations, it is important that
this problem be solved efficiently for the AV that results in the new V. Only
function values are available, and a direction of ascent cannot be assumed. There
are no constraints on the value of V.. As in figure 4.3, the problem will always
have a well defined maximum (i.e., power is a concave function of voltage, assured
by the physics of a solar cell).

A one dimensional routine was designed to solve the above problem and
appended to SCAP1D. The power associated with vg,'g is calculated (the vertical
move from the solid to the dotted curve in figure 4.2). Then, since the main
optimization algorithm (the optimization that is changing the solar cell design vari-
ables) is trying to increase efficiency, the one dimensional routine increases Vi,
by an initial step size. The initial step size used depends on the magnitude of the
changes in the design variables (as compared to the values associated with the
stored solution), since larger changes suggest a larger change in V. If the power
associated with the initial offset increases, offsets are continued in the direction of
increasing AV until the power decreases. Because power is a concave function of
voltage, consecutive offsets in voltage changing from increasing to decreasing
power implies that the maximum power voltage is contained in that interval (i.e., a
bracket is obtained around Vp,, see figure 4.3). If the power decreases after the
initial offset, the offsets are made in the negative direction (decreasing Vy;,) until
a bracket is obtained around V,,. The magnitude of the initial and any additional
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offsets prior to obtaining a bracket around Vg, is determined by a heuristic for-
mula that was observed to work well for this application.

Once a bracket is found around the maximum power voltage, restricted qua-
dratic or cubic interpolation is used to determine the optimal offset, AV'. Qua-
dratic interpolation is used if the output powers associated with three voltages are
known. Cubic interpolation is used if the output powers associated with four or
more voltages are known. As more interpolations are done, the bracket around
Vmp is tightened, and the voltages associated with the four highest values of power
are used to form the next cubic approximation. The interpolation process continues
until a sufficiently tight bracket is found around the voltage associated with the
maximum power.

There is no convergence region associated with the above algorithm (it will
always converge regardless of the initial estimate). However, the quality of the ini-
tial estimate of the maximum power voltage, which is determined by the magnitude
of the changes in the decision variables, will affect the number of bias voltages
required to achieve convergence.

4.3 Convergence Error

SCAPI1D was originally designed to report the efficiency to an accuracy of
30.005. However, for an optimization algorithm, the calculation of efficiency has
to be more accurate by orders of magnitude (+0.00005). Where accuracy is not
defined with respect to a physical device, but rather refers to the ability of the
model to predict changes in efficiency due to changes in design. For example,
SCAPI1D must be able to predict the change in efficiency that would occur if the
front surface doping concentration were raised by 1% in a design. The efficiencies
predicted do not need to be within 0.00005 of the efficiencies associated with the
actual physical devices, but the trend in the efficiencies must be predicted accu-
rately.

The calculation of efficiency using SCAP1D requires two iterative algorithms,
the Newton-like algorithm and the maximization of power as a function of voltage.
So; as well as the errors due to roundoff, cancellation, and finite precision on a
computer (e.g., see [4.1]); each objective function (efficiency) evaluation will be
affected by the error associated with solving the iterative algorithms to a finite con-
vergence tolerance. The latter will be referred to as convergence error. Conver-
gence error will generaly far exceed the other forms of numerical error.

The accuracy required in solving the maximization of power as a function of
voltage described in the previous section is of critical importance due to the fact
that it is embedded in the optimization of the solar cell design variables for
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"maximum efficiency. To insure that differences in efficiency resulting from rela-
tively small changes in the decision variables (particularly for gradient calculations)
will not be obscured or significantly affected, tight convergence criteria are used in
the maximization of power as a function of voltage. An example of varying a sin-
gle variable using the original secant algorithm and convergence criteria used in
SCAP1D, which were not designed for such an application, is given in Figure 4.4.
The result of running a nonlinear optimization code to maximize such a function
would be disastrous due to the highly nonconcave surface. The algorithm would
be prone to stop at any of the numerous local maximums or fail to converge due to
bad gradient information, and this was in fact observed in the initial attempts to
optimize efficiency. Figure 4.5 is identical to figure 4.4, but the former was gen-
erated using tighter (by a factor of 100) convergence criteria and the one dimen-
sional maximization routine described in the previous section. It is seen that the
efficiency is in fact concave along the line searched.

Even with much tighter convergence criteria, the one dimensional maximiza-
tion algorithm requires fewer bias voltages to converge to the V, than the original
algorithm and replaced the former even for single runs of SCAP1D. The reason is
made clear by observing that the region around the maximum in figure 4.3 is much
better fit by higher order approximations (cubic versus linear in the original algo-
rithm in SCAPID). Since obtaining the solution vector for a bias involves the
solution of 750 nonlinear equations, the reduction in the number of biases required
is significant. This is particularly true in an optimization, since Vn, must be
solved for each time the decision variables are changed.

By changing the numerical methods used in the model, it was possible to
tighten the convergence criteria to an acceptable level while decreasing the compu-
tational effort. This made it possible to achieve the level of accuracy desired in
the decision variables. If figure 4.5 were redone by choosing much smaller incre-
ments in the back junction depth, eventually it would start to once again resemble
figure 4.4 . For some models, the increase in computational effort that results from
tightening the convergence tolerance may be excessive. The optimization code to
be described in the next chapter can still operate on a function like that shown in
figure 4.4 . The objective evaluations are only taken at points that are sufficiently
distant from each other to reflect differences in the objective function that are not
obscured by the numerical accuracy of the model. Therefore, the level of accuracy
desired in the optimization of the decision variables must be traded off against the
computational effort required to reflect that accuracy in the model.

Since the Newton-like algorithm used to solve the system of nonlinear equa-
tions is also required for each objective evaluation, the convergence tolerance used
could have caused a problem with respect to the concavity of the objective
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function. However, the convergence criteria used in SCAP1D were tight enough,
and no problems were observed for the accuracy desired in the decision variables.

4.4 Summary

It has been established that significant savings (400% to 800%) in the compu-
tational effort required to complete an optimization can be realized by properly
adapting SCAPID to an optimization environment. The savings are realized by
avoiding the calculation of the I-V curve each time (except the first) that the optim-
ization requires the efficiency to be calculated to solve problem P1l. Instead, the
solution of a previous calculation of efficiency is used to initiate the iterative algo-
rithms used in SCAPID to calculate the efficiency for the new value of the deci-
sion variables. This was achieved by developing a new routine for use with
SCAPID that solved the problem of maximizing the power output of the cell as a
function of the voltage bias to determine the maximum power voltage.

The system of nonlinear algebraic equations, which is associated with the
finite difference transformation of the differential equations, is solved using a
Newton-like algorithm. The only limitation of the above method is that the change
in the decision variables cannot be so large that the Newton-like algorithm fails to
converge.

Depending on which variables change value, different schemes for making use
of prior solutions for the calculation of efficiency are implemented. The geometric
variables (Xg, X, and X) affect the finite difference mesh, hence they require
more computational effort than the doping variables (Dgy, Dg, and Dy).

The one dimensional optimization for the maximum power voltage affects the
efficiency associated with a decision vector in the maximization of cell efficiency.
Therefore, tight convergence criteria are used. When optimizing a model that
requires the use of iterative algorithms to calculate the objective function (some
output of the model), the accuracy desired for the decision variables must be traded
off against the computational effort required to reflect that accuracy in the objective
function.
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5 The Optimization Code

The optimization code used to optimize SCAP1D has been outlined in section
2.3. Several of the components were not discussed in detail. In this chapter, the
calculation of the numerical gradient, the implementation of the constraints, the one
dimensional optimization routine, and the test for convergence will be discussed in
detail. Also, a summary of the intended application will be presented.

The routines will be discussed from the point of view of a minimization. A
maximization is simply the minimization of the negative of the objective function.
The objective function is represented by f, the gradient by g, and the decision vec-
tor by x.

5.1 Summary of Application

For best performance, an optimization code should be designed specifically for
the intended application. At the same time, it is desirable to write a code that is
useful for solving a wide variety of problems. Both objectives are achieved by
using inputs to trigger the more specialized options used for optimizing cpu inten-
sive simulations. The discussion in this section will proceed as though the
appropriate options are in effect and the code is tailored to the application.

In the previous section, it was shown that the amount of work required to cal-
culate the efficiency depends on which variables are changed with respect to the
last solution that was saved (the current best point of the optimization). The
amount of computation required is also dependent on the magnitude of the change
in the decision vector, since this affects the quality of the initial estimates for both
the Newton algorithm and the maximization of power as a function of voltage
(both are iterative procedures). If the changes in the decision variables are too
large, the Newton algorithm may not converge because the previous solution will
not provide a good enough estimate. This will make it necessary to rerun
SCAPID in its entirety, negating the reductions in computational effort explained
in the previous section. These considerations suggest that special capabilities will
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have to be designed into the code.

The dominating factor in this application is that any calculation of efficiency
can be considered expensive enough that a premium should be placed on the
number of times the optimization code requires the efficiency to be calculated
before achieving convergence.

Assuming it is possible to model the doping concentration throughout the dev-
ice using a reasonable number of variables, the number of decision variables in the
optimization should not be large. Since the objective function is extremely difficult
to calculate, an optimization with a large number of variables would be prohibi-
tively expensive in terms of computer time. Therefore, the optimization code could
be designed for an application with a limited number of decision variables (e.g., <
20). The formulation in the problem statement (problem P1) has just six decision
variables, and a similar formulation without a back surface field (problem P2)
requires only four decision variables. Also, the formulation given in the problem
statement requires that the optimization code have the capacity to handle simple
bounds on the decision variables and linear constraints.

5.2 Calculation of the Numerical Gradient

SCAPID can be viewed as a black box. The black box supplies an output
(the efficiency), which is the objective function for the optimization, when provided
with an input (the decision vector, x) There is no closed form representation for
what is in the black box, hence analytic gradients are not available. Therefore, the
gradient must be calculated numerically. Due to this consideration, algorithms
were considered that use only function evaluations (referred to as direct search
algorithms).

A major disadvantage of most direct search algorithms is that they require that
the objective evaluations be spread out over the feasible region to be searched.
This raised difficulties with the recursive scheme described in the previous chapter
for using the solution of a previous efficiency calculation to initiate the next calcu-
lation, because the changes in the decision variables were too large. A comparison

between two algorithms (nonlinear algorithm based on searching the decision space .

with simplexes [5.1-5.3] and the code described in this report) suggested that it was
more efficient, accurate, and reliable to use a variable metric algorithm with numer-
ically calculated gradients.

The calculation of numerical gradients is particularly desirable for optimizing
a model such as SCAP1D for two reasons. First, the number of decision variables

is small (n is small). Second, the computational effort required to calculate the
efficiency is reduced if a good estimate of the solution is provided. This is
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because the initial correction of the solution vector (vertical move from the solid to
the dotted I-V curve in figure 4.2) and the maximization of power as a function of
voltage converge faster. Numerical gradients are taken at the optimum of the last
line search (the solution at such a point is stored using the strategy developed in
the previous chapter) by slightly offsetting one component of the decision vector
(see equation 5.1 below). Hence, an excellent estimate for the next solution is
available.

The use of the optimization code described in this report with models that
cannot make use of previous objective evaluations to reduce the computational
effort may not be as advantageous when compared to direct search algorithms. For
example, a model that involves the solution of a large system of linear equations
using direct methods or a time simulation that must be run in its entirety for every
objective evaluation would require the same effort if a large change or a slight
offset was made in the values of the decision variables. However, the first order
gradient information provided by numerical gradients allows second order informa-
tion to be approximated using the quasi-Newton condition. Several authors [e.g.,
5.4] favor the calculation of numerical gradients so that the more sophisticated gra-
dient based algorithms can be used, as compared to the generally less sophisticated
direct search algorithms. However, care must be taken in applying optimization
algorithms such as quasi-Newton algorithms, which were theoretically developed
assuming the use of analytic gradients, with numerical approximations of the gra-
dient [5.5-5.7].

The gradient at a given point can be calculated (approximated) numerically by
using the the forward difference formula,

f(x X9, . - X+ AX;, .o, Xg) = (X X0, o oL L Xy oL LX)
g = e . 5.1
1

Ax; represents a small offset in the ith component of the vector of decision vari-
ables. Equation 5.1 provides the ith component of the gradient. The above calcu-
lation is repeated for each component of the vector of decision variables. Hence, n
objective evaluations are required to determine the gradient using the forward
difference formula.

In optimization problems, roundoff error is usually the primary concern when
deciding on Ax; [5.5]. Assuming absolute accuracy, as Ax; goes to zero, the for-
ward difference approximation approaches the true gradient. For this reason, it is
desirable to make Ax; as small as possible. However, extra care must be taken in
the selection of Ax; when the objective function is a complicated numerical pro-
cess. For instance, the calculation of efficiency in SCAP1D requires the use of two
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iterative algorithms (Newton-iteration and the maximization of power as a function
of voltage) whose convergence may obscure the true results of equation 5.1 for
small offsets (e.g., see figure 4.4). It is necessary to make Ax; large enough to
insure that the forward difference formula is not affected by such considerations.
In general, Ax; is determined by the numerical processes used in the simulation. It
represents the accuracy in the decision variables that can be reflected in the objec-
tive function. This can be determined by an analysis similar to the one used to
generate figures 4.4 and 4.5. Ax; is calculated as a percentage (input to the code)
of the current value of x;. If the absolute magnitude of x; becomes too small; an
absolute, rather than a percentage, offset is used.

A major difficulty with the forward difference approximation of the derivative
is that it may suggest a direction that is not a direction of descent. Figure 5.1
illustrates this case. The figure only represents one component of a n dimensional
problem. By incorrectly calculating one component of the gradient, it is possible
that the direction defined and/or the steepest descent direction may not truly be
directions of descent. For example, this is particularly likely to occur when the
surface of the objective function has a steep sided valley. The algorithm will halt
if the line search subproblem fails to make progress in the direction of search.
This may occur far from the true optimum of the n dimensional problem, and the
objective may be significantly greater at.the point where the algorithm halted. This
situation is more likely to occur if one is forced to use fairly large offsets to avoid
the numerical problems associated with objectives that are the result of complex
computational processes (e.g., computer simulations). The only way to detect such
an error is to use the central difference approximation of the gradient.

f(x,Xg, . - ., X + AX, .-, Xg) = f(XXg, oL L X = AX, LX)

P = 2
8i 2 Ax; (5.2)

The central difference formula is modified so that g; is set to zero if both offsets
fail to improve the objective. Figure 5.2 shows a function that would give an
erroneous direction of descent using the central difference formula without the
above modification. When using this formula, the offset should be chosen to
reflect the desired accuracy in the decision variables.

The disadvantage of the modified central difference formula is that it requires
two objective evaluations, as opposed to one for the forward difference formula.
Therefore, it is desirable to take central differences only when absolutely necessary.
Several options are given in the code ranging from always using forward
differences to always using central differences to approximate the components of
the gradient. The most useful option for numerically intensive simulations uses
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forward differences until the program is halted due to failure of the one dimen-
sional subproblem to improve the objective function (if this occurs). Any of the
decision variables which did not improve the objective function when offset in the
forward direction are then offset in the backward direction. The existing gradient
and the backward difference are used to calculate the modified central difference.
This either results in the numerical gradient being set equal to zero, or a true direc-
tion of descent being defined.

Offsets in n linear independent directions are required to solve for the n com-
ponents of the gradient using equation 5.1. The n directions chosen are usually
the component directions, but this is not necessary. This fact can be used to save
one of the objective function evaluations needed to calculate the gradient. In
finding the minimum along a direction of search, polynomial approximations are
used to approximate the objective function along the search direction and locate the
minimum. After a point has been accepted (i.e., one dimensional search is com-
pleted) another polynomial approximation is made that includes the accepted
minimum point. The gradient of the polynomial approximation is calculated at the
accepted minimum to the line search and used as the directional derivative at that
point. Certain conditions can be used to assure the accuracy of the approximation
of the directional derivative (e.g., distance of nearest point along search direction
and magnitude of the approximation). If the conditions are met, the component of
the search direction of greatest absolute value is not offset. The components of the
gradient in the other directions are solved for as usual and used with the approxi-
mation of the directional derivative to calculate the remaining gradient component.
If forward differences are in use, this saves one objective evaluation each iteration.
If n is small, a significant savings in the number of objective function evaluations
needed to complete the optimization can result.

5.3 Constraints

Once the gradient has been solved for, the direction of search must be calcu-
lated. The method used to solve for the search direction, which has already been
presented in section 2.3, uses the BFGS update of the inverse Hessian approxima-
tion. Once the direction has been defined, it is necessary to insure that the direc-
tion is feasible (s.atisﬁes the constraints) and that the minimization along that line
remains feasible. The only constraints in problems P1 and P2 are simple bounds
on the decision variables and linear constraints. The upper and lower bounds are
handled by limiting the step size to insure the one dimensional search along the
search direction remains feasible. If any upper or lower bounds are active and the
search direction would cause the bound(s) to be violated, those component(s) of the
search direction are set to zero.



Linear constraints are handled by reducing the search direction (-Hg) (see
[5.8]) and/or limiting the step size to maintain feasibility. The direction of search
is reduced only if one of the linear inequalities is tight, so as not to disrupt the
convergence properties of the quasi-Newton directions [5.9]. Linear equality con-
straints should be handled by solving for one of the variables in the constraint in
terms of the other variables in the constraint, hence eliminating one of the variables
and the constraint from the optimization. In general, models do not require the use
of equality constraints to simulate a feasible design, unless such constraints can be
easily handled.

5.4 The One Dimensional Optimization Routine

Once a feasible direction has been defined and a maximum feasible step size
set (may be infinite), it is possible to solve the one dimensional subproblem. As
can be seen from figure 2.1, the one dimensional optimization routine (henceforth
referred to as the line search routine) is a very important component of the optimi-
zation code. During the course of an n-dimensional optimization, it is generally
necessary to execute the line search routine many times. Therefore, considerable
effort was made to develop the most efficient code possible.

The problem statement to be solved by the line search is,
minimize f{( x+ad) . (5.3)
05 @ Sapy,

The line search routine is provided with the search direction (d) and the directional
derivative. This makes the application considerably different than the one dimen-
sional routine described in section 4.2 for which a direction of improvement could
not be assumed (& can be positive or negative).

The line search routine searches in the given direction until it satisfies the
convergence criteria. The convergence criteria used in line search routines vary
widely depending on the application. For the application being discussed, it is not
of interest to solve the one dimensional subproblem exactly. To do so may require
an excessive number of function evaluations, and the n-dimensional optimization
may still be far from the region of the true minimum. For the routine described in
section 4.2, it was necessary to solve the one dimensional problem with a high
degree of accuracy, since there was only one dimension.

The routine used to solve the one dimensional subproblem given in equation
5.3 is based on restricted polynomial approximation. All the step sizes are calcu-
lated based on a polynomial approximation of the objective function along the line
of search. The step size that minimizes the polynomial approximation is either
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accepted or restricted by upper and lower bounds. No effort is made exclusively to
reduce the interval of uncertainty for the minimum, and the convergence criterion
is not based on a desired bracket of the best step size. Rather, at any step the best
possible estimate of the minimum along the search direction is used and incor-
porated into the approximation, or the line search is terminated.

Figure 5.3 shows the logic of the line search routine. The initial estimate of
the step size, ;, is the smaller of the natural quasi-Newton step size (|Hg|), the
optimal step size from the previous line search, the maximum feasible step size, or
a limit that is input by the user. The value of the objective function, f;, and the
directional derivative, f('), are known at the starting point of the search. The initial
point of the search is associated with a step size 0 = 0. Once the objective is
evaluated at the initial step size, f;; it is possible to form a quadratic approximation
(three conditions for the three coefficients of a scalar quadratic).

¢, a + ¢, a+cy=f(a) (5.4)
cpal+cioy+cp="f
co =1y
¢, =fo
The coefficient c, is solved for, and the minimum of the quadratic is calculated by
solving the necessary conditions (gradient = 0), &, = -c;/2c,. The value of o, is

either accepted as the next step size, a restricted value is used, or convergence is
detected. The restriction on the value of a, takes the form,

By sy <Ba , (5.5)

where the values of B, and B, are different if the polynomial approximation is used
for an interpolation or an extrapolation.

The objective value f,, which is associated with o,, is included in a cubic
polynomial approximation.

c3 & +c, a? + ¢ A+ ¢y = f(a) (5.6)
c3a23+c2a22+c1a2+co=f2
c3af +cyaf +cy oy +co=1f

co=1o

C1=f(’)
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Calculate the objective function for the initial step size

Solve for the minimum of the quadratic approximation, (5.5).

Restrict or detect convergence.

Solve for the minimum of the cubic approximation (5.7) Restrict

or detect convergence.

If interpolation and initial step still in approximation

Solve for the minimum of the 4th order approximation (5.9)
Restrict or detect convergence. Else,

Solve for the minimum of the cubic approximation (5.11) Res-
trict or detect convergence.

fig. 5.3 Overview of Line Search Algorithm
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From the above system of equations, it is possible to solve for the coefficients of
the cubic approximation. The necessary conditions for a minimum of the cubic
approximation result in a quadratic equation,

3csa?+2c,a+c =0 . (5.7

The ambiguity of which root of the quadratic to use is cleared up by using the gen-
eral form of the solution in the derivative of equation 5.7 and requiring it to be
positive (e.g., the minimum is always associated with a positive second derivative).
This condition implies that the root associated with adding the radical in the qua-
dratic equation always represents the minimum of the cubic approximation. The
value of a3 (determined from equation 5.7, but rather messy to write down) is
either accepted as the next step size, a restricted value is used, or the problem is
considered completed.

The logic of the routine now depends on whether a bracket has been found
around the optimal step size. If a bracket has (not) been found, the polynomial
approximation will be used for an interpolation (extrapolation).

The case of an interpolation is considered first. For an interpolation, the order
of the polynomial approximation increases to degree four.

34+ c 0+ ¢y a+cy=fo) (5.8)

C4a4+C3a
4 3 2 —

Cq4 O3 +C3a3 +c2a3 +Cl (13+C0—f3

Caof+czal+c, 2 +c mp+co=1£

cuof+cya+cat+c o +cp=1;

C0=fo

c¢1="fo

The above equations can be used to solve for the coefficients of the fourth order
polynomial that approximates the objective function along the line. The necessary
condition is now the cubic,

dcsod+3c;a?+2c,a+¢; =0 . (5.9)

The root is found for this equation by starting a Newton-Raphson iteration from the
current best point. This requires very little computational effort, and convergence
usually occurs after a few iterations. The value of the minimizing step size calcu-
lated from equation 5.9 (ot4) is either accepted, restricted, or convergence is
detected.




In the case of an extrapolation, a cubic polynomial approximation, which is
based on the objective at four points, is used.

c3 &3 +¢3 @ +¢; & + cg = f(Q) | (5.10)
;03 +af+c a3 +cg=1y
303 +Caf +¢c 0y +co =1,
cyap +cyaf+c o +eg=1

co =1y

The coefficients of the cubic polynomial that approximates the objective along the
line can be solved for using the above equations. The solution for the minimum is
based on equation 5.7. The root associated with adding the radical in the qua-
dratic formula is associated with the minimum of the cubic approximation.

The best four points are always retained and any further polynomial approxi-
mations are based on these points. If the initial point is no longer one of the best
four, one condition (the directional derivative) is lost so that for any further
approximations the conditions in the set of equations 5.10 are used. All the step
sizes are translated so that the least value of the four retained step sizes is zero.

The formula used to solve for the optimum step size for each of the above
polynomial approximations is explicitly coded into the program. This was done by
solving each of the linear systems of equations (5.4, 5.6, 5.8, and 5.10) for the
coefficients as a function of the step sizes (t’s) and the function values (f’s). The
optimal step size is expressed as a function of the coefficients of the approximating
polynomial. The increase in the computational effort required by the higher order
approximations is insignificant, particularly for the application being considered in
this work, and results in higher accuracy.

The convergence of the line search routine occurs in one of three ways. 1)
The accepted step size may be within a tolerance, input by the user, of the current
accepted minimum along the line. This implies that the new polynomial approxi-
mation did not change significantly. Hence, it is assumed that no significant pro-
gress can be made and the line search is terminated. 2) A limit is input on the
number of successful interpolations after the minimum is bracketed. If this limit is
reached, the line search is terminated. 3) A limit is input on the number of unsuc-
cessful interpolations after the minimum has been bracketed. If this limit is
reached, the line search is terminated. The above convergence criteria result in an
inexact line search.
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The standard practice of doubling the step size until the minimum is bracketed
and reducing the step size by one half until the objective is improved is not used.
This method can lead to line searches that require excessive objective evaluations
for the application being considered and is too dependent on the quality of the ini-
tial step size used. The method described above is more tolerant of poor initial
step sizes and rarely takes more than four objective evaluations to converge (usu-
ally less).

The restricted extrapolation makes it easy to allow the user to control the
magnitude of the change in the decision variables allowed at any single step. By
making the restrictions functions of the magnitude of the step size, the next step
size can be defined to be 100 times the current step size without causing conver-
gence problems (in SCAPID). Or, if the step size is large, the increase can
proceed at a slower pace (e.g., 1.5 times the step size).

5.5 Convergence Criteria

The convergence of the optimization can occur in several ways. A direction
of search may be defined, but the line search may fail to improve the objective
function. Failure of the search direction is detected when a user input lower limit
(ex) on the step size is reached while interpolating along the line of search for a
point of improvement. If this occurs, attempts are made to define a direction of
descent. The search direction is checked to see if it is the direction of steepest
descent (reduced and feasible). If not, the objective is calculated along the steepest
descent direction at the step size €,. If this fails to improve the objective and the
forward difference formula was used to calculate the gradient, the modified central
difference formula is calculated using the existing forward difference and a back-
ward difference calculation. If the directional derivative along the last line search
was used, the component of the gradient approximated is calculated using the
modified central difference formula. There are then three possibilities. 1) The
numerical approximation of the gradient has a magnitude of zero (all components
zero because all offsets failed to improve the objective function), and execution is
halted. Else, a function evaluation is made at the step size €, in the direction of
descent specified by the modified central difference approximation to the gradient.
2) If the objective improves, the line search is completed and execution continues.
3) If the objective fails to improve, execution is halted. This last situation should
not occur. If it does, the user should check the offsets being used to calculate the
gradient and/or the numerical properties of the objective function (e.g., conver-
gence tolerance of iterative algorithms used in the calculation of the objective, con-
vexity, etc.).
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The optimization code has been designed so that it can optimize a function
like that shown in figure 4.4. By choosing the gradient offset and the input €,
correctly, the optimization will only consider decision variables that are far enough
apart to disguise the local nonconvexity (sawtooth nature) of the objective. This is
important for the intended application because for some simulations it may not be
possible to get a smooth (locally convex) objective function, due to the complexity
of the numerical process and/or convergence tolerances of iterative algorithms used
to calculate the objective function.

There are also convergence criteria for the change in the objective and the
change in the decision variables. If the objective function changes by less then &
for ip,, consecutive iterations, execution is halted. If all the decision variables
change by less than g, for iy, consecutive iterations, execution is halted. The
values g, €,, and igy,, are all user inputs.

There is also a convergence criterion for the magnitude of the gradient (g).
Experience has shown that when calculating the gradient numerically the use of &
can result in prematurely halting the optimization. Also, the use of the modified
central difference formula insures that once no improvement can be made from a
given point the magnitude of the gradient will be set to zero. Therefore, when
numerical gradients are used it is advisable to set €; very tight.

5.6 Prescaling the Decision Variables

There are numerous examples of how the scaling of the decision variables
affects the convergence of nonlinear optimization algorithms. If it is known a
priori that the objective function is more sensitive to certain variables, those vari-
ables should be appropriately scaled to improve the convergence properties of the
optimization. This information is not always known prior to execution of the
optimization code. However, for many simulations favorable scaling factors can be
defined by examination of the physics of the system modeled and the units (or
magnitudes) of the decision variables. In general, a model will be optimized for
several different cases defined by variables that are not included in the optimiza-
tion. Hence, the results of previous runs can be used to arrive at scaling factors for
the decision variables. The code has an optional input vector that can be used to
scale the variables. Assuming lower and upper bounds on a variable, the range of
the variable is reduced by the scaling vector. In equation 5.1, the values of f do
not change while the value of Ax; is reduced by the scaling factor, hence multiply-
ing that component of the gradient by the scaling factor.
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$.7 Summary

The iterative processes required to calculate the cell efficiency are dependent
on the quality of the initial estimate provided. This makes it desirable to use a
code which makes use of numerical approximations to the gradient. The routine
used to calculate the numerical approximation of the gradient has been designed to
reduce the number of function calls required and improve the reliability of the
code.

The quasi-Newton condition is used to approximate the inverse Hessian so
that second order information can be used in defining the direction of search. Sim-
ple bounds and linear constraints are implemented in a manner that maintains the
convergence properties of the quasi-Newton directions.

The one dimensional optimization routine for the line search problem uses
restricted polynomial interpolation and extrapolation. The code is very efficient, is
less sensitive than standard methods to the quality of the initial step size, and
allows the user some control over the magnitude of the change in the decision vari-
ables during the one dimensional search (so that prior objective evaluations remain
good estimates to the next objective evaluation). Prior scaling of the decision vari-
ables is included.
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6 Results

In this chapter, some optimization results will be given for the problem state-

ment given in section 2.1 and repeated below for convenience.

maximize Cff( Do, Xf, DB, Xb’ DL’ XL )

Subject to the following constraints:

14
14
14
0.1
0.2
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0.0
0.0
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log Dy < 20.6
log Dg < 20.6
log D < 20.6
X; < 10.0

< 50.0
X, < 300.0
log Dy~ log Dg
XL - Xe =X,

eff = efficiency %

Dy = net front surface doping concentration [P atoms - B atoms)/cm>
(B atoms - P atoms]/cm?>

Dg = net bulk doping concentration

Dy = net back surface doping concentration [B atoms - P atoms}/cm?

X¢ = Front junction depth pm
Xp = Back junction depth um
XL = Cell thickness pm

P1)

This formulation uses the complementary error function model for the doping
profile (see figure 2.1).
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Nonlinear optimization algorithms converge in an iterative fashion to a solu-
tion. Models (e.g., SCAP1D) will inevitably will have inaccuracies when com-
pared to the actual physical device. This suggest that nothing is to be gained by
enforcing exceedingly strict convergence criteria on a model that is at best an
approximation. The manner in which the results are used, however, can also affect
the choice of the convergence criteria. It should be possible to compare the results
of several related optimizations without the comparison being affected by the con-
vergence criteria. Due to this factor, tight convergence criteria are used, and the
results are reported to high accuracy. Despite this fact, the convergence tolerance
may affect the comparison of some closely related runs.

Nonlinear optimization algorithms will find only a local extremum (in this
problem a maximum) of the objective function. The local maximum may or may
not be the global maximum. If certain conditions, pseudo-concavity, hold over the
feasible region, then the local maximum will be the global maximum. For general
functions, however, such conditions are impossible to establish. No methods exist
which can guarantee finding the global maximum for a general function. The con-
cavity of the efficiency surface for a given solar cell design problem, as defined by
the technology variables, cannot be established. A sensitivity analysis is used to
insure that the solutions found are globally optimal. Solving the optimization for
different values of the technology variables also helps to insure the maximums con-
verged to are global.

Due to the volume of results to be presented, the point where the optimization
was initiated from will not be presented. A large difference from the initial
efficiency to the final efficiency will only result if there is very little knowledge of
the effects of the decision variables. The optimizations can be purposefully started
from points with very low efficiency to show large improvements in the efficiency.
This was done in the early stages of analysis to insure that the problem was con-
cave over reasonably large regions and the code was robust.

It is desirable to start an optimization from the best estimate available as this
will tend to decrease the number of function evaluations and the cpu time required
to complete the optimization. When doing a series of related optimizations, the
optimal solution from a completed optimization usually provides the best estimate
for the next optimization to be performed.

Efficiency is shown in problem P1 to be a function of the decision variables
only. Efficiency is, however, a function of other inputs to SCAP1D that are not
included in the optimization. The illumination (100 mW/cm® AM1.5) and the tem-
perature (28 degrees C) are held constant in accordance with the standard condi-
tions presented in [3.25]. The contact and grid resistance are taken as zero (negli-
gible). Shadowing and reflection are assumed to reduce the generation rate by 7%.
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It is important to note the shadowing and reflection factor, since its value is not
standard in the reporting of results in the general literature. The results presented
may be linearly converted to different shadowing factors; 23% efficiency at 7%
shadowing and reflection is = 24.73% efficiency with no shadowing and reflection.
The relationship is not exactly linear due to variations in efficiency with concentra-
tion.

The physics of solar cells assures that efficiency is a monotonic function of
some variables (e.g., the technology variables g, Tqo» S¢, and S). Such variables
would only go to their more favorable bound if included in an optimization as
decision variables. The technology variables are of interest because they can be
used to represent different levels of technology and/or fabrication processes. By
solving optimizations at different values of the technology variables, it is possible
to determine their effect on the optimal efficiency and the associated optimal values
of the decision variables. This information is valuable for evaluating the benefit of
extra processing steps (e.g., surface passivation) and evaluating the likely benefits
of technological advances (e.g., higher quality substrate).

To fully investigate the design of silicon solar cells a number of optimizations
had to be solved. The main inputs to SCAP1D and the methods used to include
them in the analysis are summarized in table 6.1 (all tables and figures for this
chapter are in appendix B). Results are presented in this chapter for six different
cases, which are defined by specifying the inputs Sg, Sy, and Tyg (Tpg = 1/2 Tyg). In
addition, each case considers the effects of other design variables not easily incor-
porated into the optimization (e.g., back surface reflector). The interpretations of
the results are valid only for the case being discussed, and the reader must be cog-
nizant of all the inputs to SCAPID.

For each case, problem Pl is solved by simultaneously optimizing all the
decision variables. A sensitivity analysis is then performed on the optimal solution
to determine the effect of using nonoptimal values of the design variables. One
method used is to vary one variable while re-optimizing the others. This is
equivalent to solving P1 with one of the decision variables held fixed (at a nonop-
timal value for P1). A second method of sensitivity analysis is to vary one vari-
able while holding the others fixed at the optimal values associated with problem
Pl.

The effects of the technology variables are further investigated by parametri-
cally varying them and re-solving the optimization problem. The results are
presented as graphs of efficiency versus minority carrier lifetime and contour plots
of efficiency as a function of front and back effective surface recombination veloci-
ties.
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The analysis presented in this section exemplifies the usefulness of using
optimization techniques in conjunction with a model. It would be impossible to do
such an analysis using heuristic methods to determine the best design. Using such
methods one optimization can be very time consuming. Also, the inexact nature of
heuristic methods would cloud the comparisons of related runs.

6.1 Casel

For the first case to be investigated the technology variables were taken as T,
= 2 ms, S¢ = 100 cm/s, and Sy, = 100 cm/s. The minority catrier lifetime for holes,
Tpo, is taken as half the value for electrons. This represents a cell manufactured
from an excellent substrate (may not be currently achievable) with very good sur-
face passivation. A perfect back surface reflector was assumed (R, = 1.0). Hence,
the optical length of the cell is two times the cell thickness. The back surface
reflectance represents another variable that should not be included in the optimiza-
tion as a decision variable (obviously complete reflectance will always be optimal).

Table 6.2 (all tables and figures for this chapter are in appendix B) displays
the design that results from solving problem P1. In all the tables to follow, the
entry corresponding to table 6.2 will be printed in bold type, as it will form the
base line for the sensitivity analysis.

The high sheet resistance of the emitter results because lateral resistance is not
included in SCAP1D. This clearly illustrates how an optimization will bring out
the weaknesses of a model. For instance, a model which did not include heavy
doping effects would result in high doping concentrations being optimal. This is
why it is necessary to incorporate the most accurate model possible in an optimiza-
tion study. The objectionably high sheet resistance will be addressed later in this
section.

Tables 6.3-6.10 display the results of all the optimizations done to complete
the sensitivity analysis for case 1. The table headings are as follows:
eff = efficiency (%)
Ve = open circuit voltage (mV)
V mp = maximum power voltage (mV)
Jsc = short circuit current density (mA/cm?)
ff = fill factor ([eff x 1000}/[Vy x JicI)
C.s = collection efficiency (% of the generated carriers that are collected)
Twpux = Minority carrier lifetime in the bulk (us)
L4 = diffusion length in the bulk (um)
Xy = cell thickness (um)
X¢ = front junction depth (1m)
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Xy = back junction depth (Lm)

log Dy = log of the net front surface doping concentration ([P atoms - B
atoms]/cm3)

log Dg = log of the net bulk doping concentration ([B atoms - P atoms]/cm3)

log D_ = log of the net back surface doping concentration ([B atoms - P
atoms]/cm3)

O, = multiplicative factor that relates X, to the optical path length (e.g., a perfect
back surface reflector implies O = 2).

The bulk minority carrier lifetime and diffusion length are calculated using
equations 3.17 (Tyyy = Tp) and 3.21 respectively. In the code, these parameters are
actually a function of the electron and hole concentrations. Therefore, the values
that appear in the tables will be accurate as long as the bulk of the device is in low
injection (i.e., the majority carrier concentration is approximately equal to the dop-
ing concentration). The low injection assumption is explained in detail in section
3.2. Low injection in the bulk of the device is usually a valid assumption for the
incident illumination used in this work (AM1.5 at a concentration of 1.2022, 100
mW/cm?), and the actual values of Ty, and Ly will only be slightly less than those
that appear in the tables. However, certain designs may result in high injection in
the bulk of the device even at an incident power level of 100 mW/cm?, and these
cases will be pointed out.

In solving problem P1, the lower bound on the back junction depth could not
be set to zero or a solution may have resulted that had a back surface field (Dg <
Dy) with a junction depth that was impractically thin. Therefore, the constraint
D; - Dg 2 0 was used to allow the possibility of no back surface field. If the
optimization converges to a design that includes a BSF, the question still remains
as to the quantitative improvement that the back surface field provides. This is
answered by solving the following optimization problem,

Maximize Eff( Do, Xf, DB’ XL ) (PZ)

Subject to the following constraints:
14 £ Dy
14 < Dy
0.1 < X; 10.0
100 £ XL < 300.0
00 s XL -X¢

A

20.6
20.6

N IA

IA
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Table 6.3 shows the results of optimizations for a cell with a back surface
field (BSF), with and without a back surface reflector (no BSR, Opl = 1); and a cell
without a BSF (referred to as a conventional or CV cell), with and without a BSR.
Both the BSF and the BSR can only be treated as on/off design decisions (either
included or not).

For this case, the cumulative effect of the BSF and BSR resulted in an abso-
lute improvement in efficiency of 1.1% (4.6% improvement). Because efficiency is
expressed as a percentage, differences in efficiency will be reported first in absolute
terms and then parenthetically in percent difference to avoid confusion. Without
re-optimizing for each case, it is dubious if the true difference in performance
could be found. Not surprisingly, removal of the BSR results in the cell thickness
going to the upper bound of 300 um to increase the absorption of the lower energy
photons. Elimination of the BSF results in higher doping in the bulk of the device
(a lower base resistivity). With the increase in bulk doping, the bulk lifetime and
diffusion length both deteriorate. In this case, because of the lower bulk doping
used in the optimized BSF design, the integrated base doping is lower in the BSF
cell. Hence, the BSF results in higher V. due to decreased bulk and back surface
recombination. Also, the BSF results in slightly higher J,. due to better collection
efficiency, which is a result of lower bulk doping. Together, these two effects
result in an improved cell efficiency.

The conclusion is that a BSF provides a reasonable increase in performance,
despite the excellent back surface passivation that is being modeled in this case.
The BSF is beneficial because the high lifetime results in a very long diffusion
length. The sensitivity to surface recombination is very closely related to the qual-
ity of the substrate (see section 6.7), and the high quality substrate in this case
results in an improvement with a BSF even for a well passivated back surface.

A sensitivity analysis was completed for each decision variable in problem P1
(the two methods used are described at the beginning of this section). The first
decision variable to be investigated was cell thickness. Table 6.4 and figure 6.1
display the results of solving problem P1, but holding the cell thickness fixed.
Also, problem P2 was re-optimized at different values of the cell thickness. This
allowed a comparison between cells with and without a BSF at a variety of values
of the cell thickness. The results are displayed in figures 6.1 and 6.2 and table
6.5 .

The beneficial effect of the BSF is relatively constant from 10 um to 500 um
with a slight peak at 50 um. An absolute difference in efficiency of 0.44% (2.0%
difference) remains all the way out to 500 um. Thicker cells with a BSF are supe-
rior to CV cells of the same thickness primarily due to the lower bulk doping,
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which results in a higher collection efficiency, that can be used in a BSF cell. By
contrast, the thinner cells with a BSF are superior to CV cells of the same thick-
ness primarily due to higher V.. This is very quickly observed by comparing the
C,gr and V. columns in tables 6.4 and 6.5 .

The cell thickness is a relatively insensitive variable for both BSF and CV
cells at thicknesses 2 100 pum, which agrees with the conclusions of Lin [1.3]). In
fact, the lack of change in the re-optimized values (with BSF) suggests that a
parametric analysis should be accurate in observing this trend.

As mentioned above, no definite trend exists in the re-optimized values of the
doping concentrations in table 6.4 (with a BSF). Since nonlinear optimization is an
iterative process, an optimization cannot be guaranteed to result in the exact
optimal values for even a local optimum point. The optimization often halts due to
a lack of improvement in the objective function. This only suggests a region has
been found where very little progress is being made toward further increasing the
efficiency, not necessarily that the decision variables are at their exact optimal
values. For a series of related runs, the best interpretations can be made if the
differences between the solutions are significant and consistent enough that they
can not be explained by convergence tolerances. Therefore, no comment or graphs
will be made on changes in the optimal values of the decision variables unless the
above criteria are met.

The exponential absorption of the suns energy is the predominate reason that
the very thin cells (10 to 25 microns) do so well. In fact, the very thin cells have
excellent performance except for the short circuit current. The thinner cells have
better V., fill factor, and C,g in both BSF and CV cells.

Figure 6.2 displays the optimal value of bulk doping as the cell thickness is
varied for a CV cell. As the cell thickness is increased, the bulk doping decreases.

Table 6.6 and the solid line in figure 6.3 display the solution to problem P1
with the front junction depth held fixed while the other variables are re-optimized.
The dotted line in figure 6.3 represents the efficiency that results if the other deci-
sion variables are fixed at the optimal values associated with a front junction depth
of 0.1 um (bold entry in table 6.6) while varying the front junction depth. Figure
6.4 displays the optimal value of the front surface doping concentration for the re-
optimized solution. It is important to re-optimize the front surface doping concen-
tration when varying the front junction depth. Simply changing the junction depth
without changing the front surface doping concentration is not a valid comparison.
The effect of lowering the bound on the junction depth below 0.1 pum is shown to
be minimal.
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The re-optimized values of the other design variables suggests that in this case
the design of the BSF appears independent of the changes in the front junction
depth (i.e., X, and Dy do not change). The cell thickness does show small
changes. Increasing the junction depth results in a larger value of cell thickness
being optimal, and this probably leads to the very slight changes that occur in the
bulk doping.

Because SCAP1D is a one dimensional code, it does not include the effects of
lateral resistance. The optimality in a real cell with a front junction depth of 0.1
1m is suspect if coupled with front surface doping concentrations below 1020. The
sensitivity analysis of X¢ implies that the lateral resistance can be decreased by
increasing X; without significantly affecting efficiency. Although increasing X;
leads to a lower optimal value for the front surface doping concentration, the
lateral resistance still decreases. '

Table 6.7 and figures 6.5 and 6.6 illustrate the solution to problem P1 with the
back junction depth held fixed. The obvious trend is in the value of the optimized
back surface concentration. The optimal value of Dy decreases as the optimization
is re-solved at an increased value of the junction depth (figure 6.6). The trends are
similar to those observed for front junction depth, but the relative effect on the
efficiency is less. Decreasing the lower bound on the back junction depth results
in stronger fields near the back surface and a smaller region (though more heavily
doped) of the device subject to heavy doping effects, both of which combine to
result in a slightly higher V. (and efficiency).

The cell thickness, which increases slightly as X, is increased, is the only
other design variable to show any change in the re-optimization. The sensitivity
analysis of X; and X, suggests that the sensitivity analysis could have been
achieved by re-optimizing D, and Dy respectively.

Table 6.8 and figures 6.7 and 6.8 display the results of the sensitivity analysis
for front surface doping concentration. Each point on the graph represents a dou-
bling of the optimal value of the front surface doping concentration The far left
point is 1/8 the optimal doping concentration, and the far right point is eight times
the optimal doping concentration. The fixed and re-optimized cell designs are
represented by the same point in the middle of the graph (i.e., front surface doping
concentration is equal to the optimal value). Therefore, variation between the solid
and dashed line in figure 6.7 can only occur on either end.

There is very little difference between the efficiencies if the other decision
variables are fixed or re-optimized. The re-optimized value of the cell thickness is
shown in figure 6.8. If the front surface doping concentration is increased above
the optimal value, the cell thickness is increased. If the front surface doping is too
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low, the front surface becomes a more effective recombination center due to the
weaker fields and higher minority carrier diffusivity associated with a lower front
surface doping. Therefore, the cell thickness is again increased. More will be said
about how the optimization uses cell thickness to isolate recombination centers near
the surfaces when the recombination velocities are investigated (section 6.8). The
bulk doping concentration decreases as the cell thickness increases reflecting the
increased importance of bulk recombination in thicker cells.

The results here are in good agreement with the conclusions of Wolfe [1.1],
who argued that the beneficial effects of good front surface passivation may be
negated by heavy doping effects in the emitter. With good surface passivation, the
detrimental effects of heavy doping in the emitter are seen in the steep drop off in
efficiency in figure 6.7. The heavy doping effects in the emitter result in a rapid
decrease in V.. Also, it should be noted that this is at a very thin junction depth
(0.1 um). For a constant profile, a deeper junction would result in a larger region
under the influence of heavy doping (hence a more rapid decrease in efficiency as
the front surface doping is raised beyond its optimal value). The sensitivity
analysis suggests that it is better to dope too low than too high, and there is little
that can be done in the re-optimization to avoid the effects of using nonoptimal
front surface doping.

There are two other points of interest: 1) While increasing the front junction
depth and holding it fixed resulted in a lower value for the optimal front surface
doping concentration, the reverse situation is not true. The front junction depth
remains at the lower bound as the front surface doping concentration is decreased
and held fixed. 2) The optimal value of Dy results in the highest value of V. in
the sensitivity analysis. The same situations exist with respect to the back junction
depth,and the back surface doping concentration.

Table 6.9 and figures 6.9 and 6.10 show the results of the sensitivity analysis
for bulk doping. The scale for efficiency in figure 6.9 is much coarser than in
figure 6.7, reflecting the fact that in this case bulk doping is a more sensitive vari-
able than front surface doping. The maximum cell thickness in figure 6.10 is asso-
ciated with the optimal bulk doping.

The re-optimization results in much thinner cells when the bulk doping is
greater than the optimal value. This is primarily to offset the increased bulk
recombination that would result at the higher doping concentrations. As a result,
V. does not deteriorate dramatically, but the decrease in cell thickness results in a
decrease in the short circuit current.

When the bulk doping is decreased from the optimal value, the cell thickness
decreases again in response to the increasing series resistance. The increase in
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series resistance is due to a loss of base conductivity modulation [6.1]. Although
thinner cells with lower bulk doping result in a cell with higher V., the rapid fall
off in the fill factor due to high series resistance results in a cell of lower
efficiency.

Table 6.10 and figures 6.11 and 6.12 show the results of the sensitivity
analysis for back surface doping concentration. The trends are very similar to
those for front surface doping concentration. In the re-optimization, the cell thick-
ness is increased to isolate the generated carriers from the recombination that
occurs near the back surface. When a back surface doping concentration greater
than the optimal value is used, the increased Auger recombination results in a
decrease in V.. At the same time, the re-optimization results in a thicker cell
with lower bulk doping, which results in a slight increase in J.

When a back surface doping concentration less than the optimal value is used,
the cell thickness again increases to isolate the carriers generated from the more
effective recombination center, which is due to weaker electric fields and higher
minority carrier diffusivity, at the back surface. The cell efficiency is considerably
less sensitive to using a nonoptimal value of Dy than D,. However, the same
arguments made by Wolf about the front surface hold for the back surface (i.e., the
effects of better surface passivation are negated if the surface doping concentration
is too high), as suggested by Weaver [1.5]. The increasing negative slope in figure
6.11 suggest that doping more than eight times the optimal value would seriously
affect cell performance. Once again, it is better to dope too low than too high.

6.2 Case 2

For the second case to be investigated, the technology variables were taken as
Too = 1 ms, S = 1,000 cmss, and Sy = 1,000 cm/s. The minority carrier lifetime
for holes, Tp05 is taken as half the value for electrons. This represents a cell
manufactured from an excellent substrate and with good surface passivation. The
lifetime of 1 ms has been reported for substrates manufactured using the float-zone

(FZ) process.

The results for the solution to problem Pl are given in table 6.11. Tables
6.12-6.19 and figures 6.13-6.23 present the sensitivity analysis in the same fashion
as for case 1. Most off the trends are the same qualitatively, but not quantitatively.
For instance, the increase in surface recombination velocities results in several
quantitative changes. The discussion will be limited to avoid repetition.

One result of the increase in back surface recombination velocity is that BSF
cells do considerably better than CV cells. The best BSF cell has absolute increase
in efficiency of 1.15% (5.57% improvement) over the best CV cell if the upper
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bound of 300 um on X| is observed. The increase is primarily due to better col-
lection efficiency in the cell with a BSF, as the increase in V. is only about 6 mV.
The use of a BSF allows a lower value of bulk doping to be used. The lower
value of Dg results in higher C.¢ and Jg due to better minority carrier lifetime and
diffusion length. The maximum difference in efficiency for BSF and CV cells of
the same cell thickness occurs at 100 pum. Unlike the first case, there is a
significant variation in the benefit of a BSF with cell thickness.

In figure 6.14, decreasing cell thickness with a BSF and re-optimizing leads to
a reduction in bulk doping concentration (i.e., a higher resistivity base). This is
opposite the trend observed without a BSF. The combined effects of the BSF and
the BSR result in an absolute increase in efficiency of 1.49% (7.3% improvement).

This case provides an excellent example of how optimizing with and without
a BSF effects the cell design. A standard rule of thumb in cell design is to com-
pare the diffusion length with the cell thickness. If the diffusion length is greater
than the cell thickness, then the BSF should provide a reasonable increase in cell
efficiency. However, both the diffusion length and the cell thickness are dramati-
cally affected depending on whether or not the optimization is done for a CV or
BSF cell. Lower bulk doping and thinner cells invariably result when a BSF is
included. The optimal value of cell thickness for the CV cell was 500 pum with a
bulk doping of 6.7 x 10'6, while the BSF cell had an optimal thickness of 280.1
um with a bulk doping of 2.0 x 10'6. For the CV cell, the diffusion length is 461
pm, which is less than the cell thickness of S00 um. Hence, one could reach the
erroneous conclusion that the best cell design is a CV cell if problem P2 were
solved first and problem P1 was not solved.

The sheet resistance given in table 6.11 that is associated with the optimal
junction depth is once again too high (988 €/[1). The sensitivity analysis with
respect to front junction depth suggests that the junction can be made deeper if the
front surface doping concentration is re-optimized. For example, the efficiency at a
fixed junction depth of 0.5 pum is only slightly lower if the problem is re-
optimized, but the sheet resistance of the emitter decreases to 360 /0. Once
again, it is necessary to re-optimize or the efficiency drops off radically. This sug-
gests that a parametric analysis in which only the front junction depth is changed
would lead to an entirely different conclusion about the sensitivity of the front
junction depth. As the junction depth is increased, the front surface doping con-
centration must be decreased or a large region of the cell is subject to heavy dop-
ing effects, and the cell quickly becomes emitter dominated.

The sensitivity to the front junction depth is greater in this case than it was in
the previous case. This is because the front surface recombination velocity is
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greater. The decrease in minority carrier lifetime results in the opposite trend (i.e.,
less sensitivity to the surfaces), but the former dominates the differences between
cases one and two. As the front surface passivation is degraded (S¢ is increased),
the cells will become increasingly sensitive to the front junction depth, and the
blue response of the cell will deteriorate if the junction depth is increased to reduce
the lateral resistance.

For the sensitivity analysis of the back junction depth, the same trends are
observed as in the previous case. However, the increase in the back surface
recombination velocity makes the back junction depth a more sensitive variable.

Since the optimal cell thickness is near the upper bound, the re-optimization
when the front or back surface doping concentration is varied has less effect (in the
last case the cell thickness was the primary means of compensating for nonoptimal
doping concentrations at the surfaces). Also, the higher recombination velocities
result in higher doping concentrations at the surfaces, for stronger electric fields
and lower minority carrier diffusivities. Hence, increasing the doping concentra-
tions to eight times their optimal values results in significant Auger recombination
and bandgap narrowing, and larger reductions in efficiency (as compared to the
first case). There is less effect if the doping concentrations are reduced from their
optimal values. Once again, if unsure of the optimal value of surface (front or
back) doping concentration, it is better to dope too low than too high. '

As in the previous case, in the sensitivity analysis for the bulk doping concen-
tration, the thickest cell is associated with the optimal value of the bulk doping
concentration. In the sensitivity analyses for Dy and Dy, the optimal value results
in the highest value of V.

6.3 Case 3

For the third case to be investigated, the technology variables were taken as
T,0 = 1 ms, S; = 1,000 cmv/s, and Sy = eo cm/s. The infinite back surface recombi-
nation velocity represents an ohmic contact. The minority carrier lifetime for
holes, Ty, is taken as half the value for electrons. This is identical to the previous
case, but without back surface passivation.

The results for problem P1 are given in table 6.20 . Both the upper bound for
cell thickness and back junction depth are active (the front junction depth remains
at the lower bound). The optimal values for these variables without an upper
bound were found in their respective sensitivity analysis (X = 390.7 um and X, =
112 pm). The results of the sensitivity analysis for case 3 is given in tables 6.21-
6.28 and figures 6.24-6.32 .
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The advantagc' of the cell with a BSF (absolute difference of 1.3%) is not
much greater than the previous case (absolute difference of 1.15%). However, the
sensitivity analysis with respect to cell thickness with and without a BSF results in
much greater differences for thin cells. a comparison between tables 6.13 and 6.22
shows that poor back surface passivation severely effects the efficiency of thin cells
even with a BSF. The drop in efficiency is a result of poor V.. V. deteriorates
due to increased back surface recombination and recombination in the BSF (more
heavily doped in thin cells).

In table 6.21, the optimal CV cell has a higher V. than the optimal BSF cell
because the higher bulk doping used in the CV cell results in significantly greater
integrated base doping. The reason that the cell with a BSF is superior in
efficiency is that it attains a better collection efficiency and hence improved Jg.
The cells are of the same thickness, so this increase is due to lower bulk doping.
The lower Dy for the BSF cell results in significantly higher Ty, and Lg.

The effectiveness of the BSF is clearly illustrated by the effect of the BSR on
the CV and BSF cells. The cell with a BSF still shows about one half percentage
point improvement with the addition of a BSR. Even though both cells are the
same thickness (300 pm), the use of a BSR for a CV cell provides only half as
much improvement in efficiency. This is because with the addition of a BSR most
of the increased generation occurs near the back of the cell where the collection
probability is low for the CV cell.

The optimality of a thicker back junction for this case agrees well with the
conclusions of Lindholm and Sah [1.7]. Figure 6.28 suggests that whether the sen-
sitivity of X, is studied parametrically or re-optimized the same conclusion would
be reached, although the actual numbers would differ slightly. The sensitivity of
the back junction depth reflects the need to keep the generated minority carriers
from diffusing to the recombination center at the back surface. The very thick
back junction depth can almost be considered a form of nonconstant bulk doping
(referred to as a drift field or DF cell in [1.7]).

The optimal value of the back surface doping concentration decreases as the
junction depth is increased (figure 6.29) to avoid excessive recombination. The
doping concentration, however, remains at a level high enough to significantly
degrade the minority carrier diffusivity as this is the mechanism for shielding the
minority carriers from the back surface in the DF cell. In figure 3.4, the electron
mobility decreases rapidly for doping concentrations between 10!¢ and 2.5 x 1018
(the log of which is 18.4).

All the previous results have suggested that it is better to dope the surfaces
too low than too high. In figure 6.32, however, the efficiency decreases more
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rapidly if the back surface doping concentration is below the optimal value. This
is because if the doping concentration is reduced below 2 x 10'® the electron
mobility increases rapidly. Hence, the effectiveness of the BSF, which relied pri-
marily on decreasing the electron (minority carrier) mobility, is reduced.

If Dy is greater than the optimal value, the re-optimization reacts by decreas-
ing the back junction depth. This is done to reduce the region of the device sub-
ject to heavy doping. In [6.2], the minority carrier reflecting capacity of high-low
junctions was found to be significantly impacted by Auger recombination.

The fact that the bound on cell thickness is active results in little change
between the fixed and re-optimized values calculated during the sensitivities of the
front and back surface doping concentrations. In the first two cases, the cell thick-
ness was the variable that changed most significantly.

6.4 Case 4

For the fourth case to be investigated, the technology variables were taken as
Tp0 = 0.4 ms, S¢ = 10,000 cm/s, and Sy, = 10,000 cm/s. This was the lifetime first
suggested when equation (3.14) was derived. The surface recombination velocities
are high enough to have substantial impact on the efficiency. The minority carrier
lifetime for holes, T,9, is taken as half the value for electrons. This represents a
cell manufactured from a medium quality substrate with ineffective front and back
surface passivation.

The results for problem P1 are given in table 6.29. Due to the higher front
surface recombination velocity, the optimal value of the front surface doping con-
centration is higher than in the previous cases. Higher surface doping concentra-
tions are required to provide stronger electric fields to shield the generated minority
carriers from the surfaces and reduce minority carrier diffusivity. The higher front
surface doping concentration lowers the sheet resistance of the emitter, hence it
will not be necessary to make the junction as deep to lower the lateral resistance.
This is fortunate because with poor front surface passivation the sensitivity to junc-
tion depth is greater (see figure 6.35), and the blue response of the cell falls off
rapidly.

Both the upper bound for cell thickness and back junction depth are active
(the front junction depth remains at the lower bound). The true optimal value for
these variables is determined in their respective sensitivity analysis. The results of
the sensitivity analysis for case 4 is given in tables 6.30-6.37 and figures 6.33-
642 .

The sensitivity due to back junction depth is of particular interest, because it
reveals that the efficiency is not always a concave function of the decision
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variables. If the optimization were started at a back junction depth less than 1.0
um, a local minimum that is not the true global minimum would result. This sug-
gests the necessity of a complete sensitivity analysis. The optimal value for the
back junction depth changes discontinuously from the lower bound to the upper
bound as the back surface recombination velocity is increased from 1,000 cm/s to
10,000 cmv/s (this was observed by performing a series of optimizations as Sy, was
varied). The change occurs when the efficiency associated with deep junction
depths (a local maximum) is greater than the efficiency associated with thin junc-
tion depths (also a local maximum). Throughout the region tested (1,000 < Sp <
10,000), both local maximum existed. This very clearly illustrates how the tech-
nology variables perturb the efficiency surface (the surface of the objective func-
tion).

Due to the high value of S;, the optimal value of the front surface doping
concentration is quite high (7.2 x 10!%). Therefore, when the value of Dy is
increased beyond the optimal value in the sensitivity analysis, there is a significant
reduction in the efficiency due to extreme heavy doping effects.

6.5 Case §

For the fifth case to be investigated, the technology variables were taken as
T, = 0.1 ms, S; = 1,000 cm/s, and Sy = 1,000 crv/s.  This lifetime is meant to
represent those available in the sheet technologies. Hence, the upper bound for cell
thickness was decreased to 100 um for problems P1 and P2. It may be that even
lower lifetimes have to be considered, and this is done in the investigation of the
technology variables. Both surfaces are passivated in this case. The minority car-

rier lifetime for holes, Tp0> is taken as half the value for electrons.

The results for problem P1 are given in table 6.38 . The upper bound for cell
thickness is active (the front junction depth remains at the lower bound). The true
optimal value for cell thickness is given in the sensitivity analysis. The results of
the sensitivity analysis for case S is given in tables 6.39-6.46 and figures 6.43-
6.52 . -

Table 6.40 shows that at this lifetime it is still possible to get high values of
V., fill factor, and C.g from very thin cells. In figure 6.44, the bulk doping con-
centration (with a BSF) increases with decreasing cell thickness, until very thin
cells (<25 wm). This is different than in the first four cases and reflects the impor-
tance of bulk recombination for a low-lifetime substrate. The optimal value of the
cell thickness is much less than in case 2. Also, there is significantly less reduc-
tion in efficiency for the very thin cells, when compared to the efficiency at the
optimal cell thickness. These are both expected results for a lower lifetime
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substrate.

6.6 Case 6

For the sixth case to be investigated, the technology variables were taken as
Too = 0.1 ms, S¢ = 1,000 cmy/s, and Sy = e= cm/s. This case is the same as case 5,
except there is no back surface passivation.

The results for problem P1 are given in table 6.47 . The upper bound for cell
thickness is active (the front junction depth remains at the lower bound). The true
optimal value is determined in the sensitivity analysis for cell thickness. The
results of the sensitivity analysis for case 6 are given in tables 6.48-6.55 and
figures 6.53-6.61.

Due to the thin cell and the poor lifetime the optimal value of the back junc-
tion depth does not reach the upper bound. The BSF field provides considerable
improvement at very thin cell thicknesses when compared to the same thickness
cells with no BSF. As in the previous cases with poor back surface passivation
(three and four), the thin cells no longer provide improved V., fill factor, or C.4.

In figure 6.61, significant differences result between the re-optimized and the
fixed cases because the back junction depth is used to compensate for the use of
nonoptimal back surface doping concentrations (see table 6.55).

6.7 Analysis of Lifetime

The effects of varying T,,, the minority carrier lifetime in lightly doped sili-
con (saturation lifetime), are given in table 6.56 and figure 6.62. Each point on
figure 6.62 is the result of an optimization and represents a different cell design.
The optimal values of the decision variables for each point are given in table 6.56 .
The results are given at seven different levels of surface passivation. The front and
back surface recombination velocities are taken as the same value. In the next sec-
tion, all combinations of the surface recombination velocities will be considered.
Lifetimes greater than those currently achievable are included in the analysis. The
efficiency of 25.258 % would convert to 2 27.16 % if shadowing and reflection
were disregarded, which is approaching the theoretical maximum.

The most obvious trend is the increasingly detrimental effect that recombina-
tion velocities have at higher lifetimes. As the substrate quality increases, cell per-
formance is easily dominated by the surfaces. The contribution to the saturation
current by surface recombination, even at relatively low values of surface recombi-
nation velocity, becomes increasingly important. At very high lifetimes, recombi-
nation velocities as low as 100 cm/s will result in large losses in efficiency.
Improvements in the saturation lifetime beyond 1 ms will not yield significant
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increases in efficiency unless the effective front and back surface recombination
velocities are = 100 cm/s or lower.

Table 6.56 illustrates that higher lifetimes generally result in higher values of
the front and back surface doping concentrations being optimal. However, the
trend in the bulk doping concentration is less clear, as this value is strongly
influenced by the cell thickness, which varies drastically for the different lifetimes.

The curves in figure 6.62 are affected by the upper bound on the cell thick-
ness (300 pum) in problem P1 for recombination velocities greater than 1 cmis.
The results in table 6.56 show that the upper bound is almost always active at the
higher lifetimes. The lower lifetimes tend to have lower values of optimal cell
thickness and are not as severely affected by the upper bound. The increases in
efficiency for cell thicknesses greater than 300 pm would be the result of isolating
the generated carmriers from the recombination centers at the surfaces. Previous
results suggest that the increase in efficiency that would result from increasing the
cell thickness beyond 300 pum would be marginal, and increasing cell thickness
beyond 300 um for cells fabricated from a high quality silicon substrate may not
be a cost effective design strategy.

The curve for 1 cm/s (log sf = log sb = 0) shows a sudden increase in slope
at higher lifetimes. This is due to the emergence of a new local maximum which
becomes the global maximum at high lifetimes and low surface recombination
velocities. This illustrates the nonconcavity of efficiency as a function of the deci-
sion variables and how the technology variables affect the efficiency surface.
Table 6.57 shows a comparison of the local maximums for different values of the
technology variables. At a lifetime of 10 ms and surface recombination velocities
of 1 cmvs, the usual maximum (Dg = 10!6) disappears. For several other cases,
both local maximums exist. Finally, for the last case in table 6.57, the local max-
imum around Dg = 10'* disappears. Where both maximums exist, the solution that
the optimization will converge to depends on where the optimization is started
from. The true optimum value of the decision variables will change discontinu-
ously as the recombination velocities are lowered and the lifetime is increased.

The bulk minority carrier lifetimes and diffusion lengths given in table 6.57
for the thin cells with low bulk doping may be significantly lower due to the fact
that some of the cells may be approaching high injection in the bulk.

In table 6.57, the thinner cells have higher V. and C.. However, thinner
cells result in a shorter optical path and a decrease in Ji.. The very thin cells are
extremely sensitive to surface recombination, and the associated local maximum

exists only for cells with excellent front and back surface passivation. The optimal
thickness drops substantially with lifetime (145.1 pm at 10 ms, 94.8 um at 5 ms,
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and 49.7 um at 2 ms). As the lifetime drops and the optimal cell thickness
decreases, the local maximum is no longer globally optimal due to the rapid
decrease in J .

The fill factor, which is a strong function of V., in some cases is consider-
ably higher for the local maximum associated with a lower value of V.. This is
due to a loss of base conductivity modulation (i.e., increased series resistance) that
occurs at low bulk doping. This, as well as lower bulk recombination, is the rea-
son that the optimal value cell thickness is so thin.

If the back surface is well passivated, it would be expected that the CV cell
would do almost as well as the BSF cell. For example, the case of log S¢ = 0 and
log S, = O represents excellent surface passivation, and the above statement is true
for the cases where the more common local maximum (Dg = 1016) is the global
maximum. However, at the lifetimes of 10, S, and 2 ms the CV efficiency
approaches the local maximum which is not global (see table 6.58). The true
optimal design in these cases requires a BSF even with a well passivated surface to
attain the global maximum. This may be due to better conductivity modulation
with the BSF cell, but the boundary conditions of the model require that the major-
ity carrier concentration equal the net doping concentration at the contacts.
Because the back contact is not heavily doped, which was assumed in the formula-
tion of the boundary conditions, the effect of doping concentrations as low as 10!
at the back contact may be equivalent to surface recombination. From a practical
standpoint, the BSF design is more desirable due to better contact properties (lower
contact resistance at the back contact due to higher doping). The above considera-
tion is important in analyzing the usefulness of a design because contact resistance
is assumed negligible and is not included in the calculation of efficiency in this
work.

When the lower bound on bulk doping was lowered to 10!, the optimal bulk
doping went to the lower bound resulting in a very slight increase in efficiency (for
the maximums associated with very light bulk doping).

6.8 Analysis of Surface Recombination Velocities

The next runs were made to examine the sensitivity of the efficiency to the
recombination velocities. The surface recombination velocities quoted are
"effective” surface recombination velocities. In reality, the device will have
different recombination velocities at the silicon - silicon dioxide interface and the
silicon - metal interface. Even a cell with passivation under the contacts (a thin
SiO, layer) can still be expected to have different recombination velocities due to
the differences in the levels of surface passivation. In a one dimensional code, the
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effective surface recombination velocity is assumed to equal the overall recombina-
tion velocity that would result on a two dimensional surface. It is not meant to be
the recombination velocity measured away from the contacts.

To optimize all combinations of SF and SB of interest required considerable
effort. It was decided that the problems would be solved in the form of problem
P1 and P2 with R, = 1.0 (Op; = 2). This was required because it was not known a
priori what the optimal cell thickness would be. The upper bound for cell thick-
ness varied depending on the lifetime being considered. It was shown in the previ-
ous results that a back surface reflector used with a BSF cell results in an absolute
increase in efficiency of 0.46 percentage points at a cell thickness of 300 pm.

The results for solving problem P1 at 7,3 = 2.0 ms with an upper bound on
cell thickness of 500 um for a variety of combinations of recombination velocities
are given in table 6.59. In the cases with poor surface passivation, the upper
bound of 500 um was reached. As discussed above, since all runs were made with
R, = 1.0, this does not appear to be done primarily to increase the optical absorp-
tion. Rather, the optimization was reacting to the recombination centers at the
front and back surfaces and the large value of the diffusion length that is associated
with this lifetime. Thin cells resulted only when both the front and back recombi-
nation velocities were 100 cnv/s or less. As expected, when the back surface
recombination velocity was high, the optimization increased the cell thickness to
isolate the carriers generated by the light from the back surface by increasing the
cell thickness. When the front surface recombination velocity is increased, the
optimization reacts by increasing the cell thickness to isolate the carriers generated
by the light reflected off the BSR from the front surface. This is observed by the
increase in cell thickness even when the back surface recombination velocity is
very low, which implies the increase was not due to the large value of the bulk
diffusion length (e.g., compare the design for log S; = 0 and log Sy =0 to the
design for log S; = 3 and log Sy = 0). The optimization is trading off all the
effects of increased cell thickness, which include increased absorption, increased
bulk recombination, and isolating the generated carriers from the surfaces. The
results suggest that for a lifetime of 2 ms isolating the generated carriers from the
surfaces is the most important. Hence, recombination velocities are strong factors
in determining the optimal cell thickness.

The results of table 6.59 are easily understood by analyzing how the surface
recombination velocities are used in the code. In SCAP1D, the front and back sur-
face recombination velocities are used to determine the boundary conditions of n
and p (electron and hole concentrations). If ohmic contacts are specified, the boun-
dary conditions of n and p are set to their equilibrium values (essentially infinite
recombination velocity). If there were significant generation occurring near a
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surface, the hole electron pairs are lost (recombined) due to the fact that the boun-
dary conditions are at equilibrium, and the solution vectors of n and p are forced to
satisfy the boundary conditions. By increasing the cell thickness, the generated
carriers are moved farther from the boundaries. Hence, the electron and hole con-
centrations, the solution vectors n and p, are not as strongly affected by the boun-
dary conditions. The interpretation is that the minority carriers have an increased
probability of being collected before diffusing to a surface (i.e., avoid recombining
at a surface). For finite recombination velocities, the principles are the same but
the actual calculations in SCAP1D are more complex (see equation 3.23).

The observations made above must be viewed in the light of the previous
results that suggested large changes in the cell thickness can have a small effect on
efficiency. Table 6.60 shows the results when the case with ohmic boundary con-
ditions is optimized with no upper bounds on cell thickness or back junction depth.
The thickness increases to beyond 700 microns. The difference in efficiency is
only 0.03 when compared to the optimal result with the bounds used to generate
table 6.59 (XL < 500 and X, < 50). The optimization code will vary the variables
significantly even if the resulting increase in efficiency could not be measured
experimentally. This is not meant to be a practical design, but only to determine
how large the optimal values are and illustrate the importance of a complete sensi-
tivity analysis.

The results of table 6.59 were used to initiate a second set of runs that set the
upper bound on the cell thickness at the more practical limit of 300 microns. The
results of these runs are given in table 6.61 . Any entries in table 6.59 that resulted
in a cell thickness of less than 300 microns were not rerun, but are included in
table 6.61 for completeness. Figure 6.63 is a contour plot of optimal efficiency
versus front and back effective surface recombination velocities based on the
results of table 6.61. The contour plot is for "optimal efficiency”, so that all of the
points in the two dimensional surface of S; and S, correspond to a different cell
design. Table 6.61 shows that significant differences exist in the cell design as the
recombination velocities are varied. Therefore, the contour plot of efficiency for a
set design would be significantly different.

As the front surface recombination velocity is raised, the front surface doping
concentration is increased. This occurs until the front surface doping concentration
reaches its upper bound, at which point the front junction depth increases from its
lower bound. Numerically, this increases the integrated charge in the emitter,
which is important in determining the effects of the boundary conditions (i.e., the
surface recombination). Although it would appear that increasing the junction
depth would be harmful, the probability of collecting the carriers generated near
the surface is so low that the optimal design forsakes some of these carriers to
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raise the probability of collection of the carriers generated slightly farther from the
surface.

The sensitivity analysis of the six cases treated earlier in the section made it
clear that the optimal value of the front surface doping concentration must be low
to gain the full benefit of good front surface passivation. If the front surface dop-
ing concentration is raised above its optimal value, the gains of surface passivation
will be negated by heavy doping effects in the emitter. However, when the front
surface recombination velocity is high, the strong fields and reduction in minority
carrier diffusivity associated with heavy doping deter surface recombination and
this is more beneficial than the heavy doping effects are harmful. In determining
the optimal value of the front surface doping concentration and junction depth, the
optimization finds the optimal tradeoff between heavy doping effects and surface
recombination.

Some of the designs given in table 6.61 (particularly those associated with
low values of Sy) would result in extremely high lateral resistance in the emitter. If
the front surface is well passivated, it is no longer critical to make the front junc-
tion depth as thin as possible. This was shown in the sensitivity analysis per-
formed for front junction depth for the six cases described earlier. When the front
surface recombination velocity is high (and junction depth becomes critical), the
optimal value of the doping concentration is higher resulting in lower lateral resis-
tance. The conclusion is that including lateral resistance in the analysis would not
significantly affect the optimal efficiency contours (figures 6.63-72). However, the
optimal values of the front junction depth and front surface doping concentration
listed in the tables would change, particularly for low S;.

The back surface doping concentration increases with the back surface recom-
bination velocity until log S, = 4. At that point, the design changes from a BSF to
a DF cell (i.e., the back junction depth changes from the lower to the upper
bound). The back surface doping concentration decreases to reflect the change in
junction depth, then rises slightly as Sy, continues to increase. The deeper junction
results in a significant decrease in the probability of collection for the carriers gen-
erated near the back surface. However, it is apparent from the optimization results
that the deeper junction provides better shielding from the back surface for a
majority of the generated carriers (the number of carriers generated decreases
exponentially from the front surface, disregarding the photons reflected from the
BSR).

Once the back surface recombination velocity reaches 10° cmus, there is little
further change in the efficiency or the optimal values of the design variables.
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The effect of back surface recombination velocity is not nearly so strong as
front surface recombination velocity, as can be expected since so many more car-
riers are generated near the front surface. Since the substrate modeled is of excel-
lent quality, 2 ms electron minority carrier lifetime in lightly doped silicon, the
device is very easily dominated by the surfaces.

All the runs were initiated with a back surface field (six variable optimiza-
tion). It was not expected that the BSF would make a difference for the cases with
very low back surface recombination velocities (disregarding the results from the
previous section). It was anticipated that the BSF could be eliminated by converg-
ing to a point where the back surface and bulk doping concentrations were equal.
This never occurred, however, and there are a couple of possible explanations. It
has already been observed that the optimization code is sensitive to very small
numerical differences in the efficiency. It may be that a cell with a BSF is incre-
mentally better than a cell without a BSF (even at low back surface recombination
velocities). This may not be due to any shielding effects, but just a result of a
slight boost in V. combined with a decrease in the optimal value of the bulk dop-
ing and cell thickness. Or, it may be that the results are at a local minimum and it
is not possible to converge to a cell with no BSF, depending on where one initiates
the optimization from.

The same set of runs was made for T, = 2 ms while solving problem P2 (i.e.,
an optimized CV cell). The results are shown in table 6.62 and figure 6.64. The
effect of the back surface field is quite obvious when comparing figures 6.63 and
6.64 . The intersection of the contour lines along the axis log S; = O does not
change significantly, but the BSF cell is far superior as the back surface recombi-
nation velocity is increased.

Looking at the case log S; = 0 and log S, = 5 in tables 6.61 and 6.62 it is
again seen that the optimal CV design results in a higher V. than the optimal BSF
design. Both cells are 300 um thick (the upper bound for X;). The BSF cell is
superior because the use of the back surface field allows lower bulk doping to be
used. This results in better minority carrier lifetime and diffusion length in the
bulk, which increases Jg, and Cg.

When good front surface passivation is coupled with very poor back surface
passivation, the optimization reacts by increasing the front junction depth. This is
done to help increase the collection probability of the carriers generated deeper in
the cell. Since there is not a significant recombination center at the front surface,
the front junction depth does not have to be at its lower bound to collect the car-
riers generated at the front surface.
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With low Sy, the optimal CV design in table 6.62 uses low front surface dop-
ing to avoid heavy doping effects in the emitter. However, it is then necessary to
heavily dope the base to get high V.. As S, increases for a given value of Sg, the
bulk doping is further increased to reduce the back surface recombination. The
highest bulk doping occurs with low S¢ and high Sp. The highest optimal value of
the bulk doping is = 2.0 x 107 (bulk resistivity of 0.12 Q-cm).

Several other lifetimes were solved for and the results are given in tables
6.63-6.70 and the corresponding contour plots in figures 6.65-6.72. Many of the
same trends discussed above are observed. As the lifetime decreases the sensitivity
to the surfaces decreases.

For the lowest lifetimes (0.1 and 0.05 ms) the upper bound on cell thickness
was decreased to 100 pm. Comparison of figures 6.70 and 6.71 illustrates the sub-
stantial benefits of using a BSF with a thin cell when the back surface is poorly
passivated.

Figure 6.69 was generated by raising the upper bound on cell thickness from
100 to 300 pum at T,y = 0.1 ms. Comparison of figures 6.69 and 6.70 clearly illus-
trates the effects of using the cell thickness to isolate the surfaces for cells with
poor surface passivation. The tradeoff for increased cell thickness also includes the
increased generation that occurs when the cell thickness is increased beyond 100

jm.

6.9 Summary

In this chapter, the cell designs for six cases (see below), defined by the tech-
nology variables, were optimized.

Table 6.71 Summary of Cases

case o S¢ Sy XL <
1 2 ms 100 cmv/s 100 cm/s 300 um
2 1 ms 1,000 cm/s 1,000 cm/s 300 um
3 1 ms 1,000 cm/s oo 300 um
4 04ms 10,000cm/s 10,000 cm/s 300 pm
5 0.1 ms 1,000 cmv/s 1,000 cmy/s 100 pm
6 0.1 ms 1,000 cnv/s oo 100 pm
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A sensitivity analysis was performed on each of the optimal solutions. Also, the
technology variables were varied parametrically and the cell design reoptimized.
Some of the results are summarized below.

e The high sheet resistivities for the emitters of the optimal designs reflected the
fact that lateral resistance is not in the SCAP1D model. This will be further
investigated in the next chapter.

e  Several examples were cited that showed that for some values of the technol-
ogy variables the efficiency is not a concave function of the design variables.

e The optimal cell design, the sensitivities of the optimal solution, and the
optimal value of the efficiency vary drastically as the technology variables are
changed. Therefore, all the optimization results must be stated in reference to
the values of the technology variables used.

e  The strongest interactions in the cell design are between X; and D, (greater if
S¢ is high), X, and Dy (greater if Sy, is high), and X; and Dg (greater if T, is
low).

e As well as the surface doping concentrations and the junction depths, the
optimal value of the cell thickness is very dependent on the surface recombi-
nation velocities.

¢  Heavily doping well passivated surfaces will result in a cell that is dominated
by heavy doping effects, and the benefits of surface passivation will be lost.

e  For unpassivated or poorly passivated surfaces a thick BSF results in higher
efficiency than a thin heavily doped BSF.

e  For all the cases considered, a cell with a BSF resulted in a higher efficiency
than a CV (conventional n-p, no BSF) cell. The optimal design with a BSF
invariably resulted in a thinner cell with lower bulk doping. This suggests
that parametric analysis will not accurately predict the effects of a BSF since
it is necessary to vary many variables simultaneously. The optimal cell with a
BSF often had lower V. then the optimal CV cell, but better efficiency due
to higher J.

e The cells optimized while cell thickness was held at a low value had the
highest values of V., fill factor, and collection efficiency, but both surfaces
had to be well passivated. Thin cells will be further investigated in chapter 8.

e At very high lifetimes, recombination velocities as low as 100 cm/s will result
in large losses in efficiency. Improvements in the saturation lifetime beyond 1
ms will not yield significant increases in efficiency unless the effective front
and back surface recombination velocities are = 100 cm/s or lower.
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e The efficiency associated with the optimal cell design is insensitive to Sy for
values greater than 10° and S; for values greater than 107. Sensitivity to S
and S, is highly dependent on the value of Ty.
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7 Lateral Resistance

In this section, the effect of lateral resistance on the results in the previous
section will be discussed. An approximate correction term for lateral resistance

will be derived and appended to the objective function. Results will then be given
for the new objective function.

7.1 Correction for Lateral Resistance

Lateral resistance occurs in the emitter of a solar cell with conventional
geometry (i.e., front and back surface contacts) and can significantly affect the per-
formance of a cell. Current generally flows perpendicular to the surfaces in the
bulk of a solar cell. Because the top metal contact grid only partially covers the
top surface, the current must flow laterally in the emitter to be collected by the
grid. If the emitter is very thin, significant current crowding can occur leading to a
resistive voitage drop in the emitter. The doping concentration in the emitter deter-
mines the resistivity of the material (resistivity is a function of the hole and elec-
tron concentrations). Higher doping concentrations result in lower resistivities.
Hence, to minimize lateral resistance, the cell should be designed with a thick
heavily doped emitter.

The above criterion is in direct conflict with other considerations that affect
cell performance. Due to the exponential absorption of the incident radiation, the
majority of the electron-hole pairs are generated near the front surface. The proba-
bility of collecting an electron-hole pair generated near the front surface may be
significantly reduced if the front surface is an effective recombination center. If
this occurs, it is desirable to make the junction as close as possible to the front sur-
face. Also, heavy doping in the emitter results in the detrimental effects of band
gap narrowing and Auger recombination.

In the previous section, the results of the optimization runs reflected the fact
that SCAP1D does not include lateral resistance. In each of the six cases studied,
the optimal value of the front junction depth was at the lower bound of 0.1 pm.
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This junction depth led to high values of sheet resistivity in the emitter which
would result in a lower efficiency if the effects of lateral resistance were included
in the calculations.

The sensitivity analyses performed on the front junction depth implied that the
front junction depth could be increased as long as the other variables were re-
optimized (e.g., figure 6.3). The re-optimization generally resulted in a lower value
of front surface doping concentration being optimal. Combined with the increase
in junction depth, however, the sheet resistivity of the emitter decreased. The sen-
sitivity of the efficiency to such changes was dependent on the value of the
effective front surface recombination velocity.

The higher the effective front surface recombination velocity, the more sensi-
tive the efficiency is to the front junction depth. A higher front surface recombina-
tion velocity, however, resulted in a greater value of the front surface doping con-
centration being optimal and lower sheet resistivities for the emitter. The higher
front surface doping concentration results because stronger electric fields and lower
minority carrier diffusivities are required near the surface to collect the minority
carriers before they recombine.

In conclusion, in situations where the front junction depth is a particularly
sensitive variable (high Sy), the lateral resistance is less of a problem. When the
front surface recombination velocity is low, the lateral resistance of the designs
given in the previous section is too high, but the junction depth is less sensitive
and can be increased to lower the lateral resistance.

The above conclusions can be validated by including a correction for the
lateral resistance in the optimization. Since SCAPID is a one dimensional code,
the correction term is an approximation. The derivation of a lateral resistance
correction term for use with SCAPI1D is based on figure 7.1 which shows the top
and side views of a solar cell with a contact grid on the front surface. Although
different geometries are used in designing contact grids, the majority of the cell
surface is covered by fingers (narrow grid lines which are used for collecting the
current generated in the cell). The fingers are usually connected to a thicker grid
line referred to as a busbar. In the simple approximation to be given, however,
only the fingers will be included.

Assuming an n-type emitter, the electrons which enter the emitter must flow
laterally to the closest grid line. In figure 7.1, all those electrons a distance d/2 or
less from a finger will flow to that finger [7.1]. The resistive losses can be calcu-
lated by the following integral,

x=d72
Ploss = I I%de . (7.1)
x=0
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Pe dx

The incremental resistance, dR, is . The maximum power current, I, is

equal to J,Lx. Hence, the integral in equation 7.11s
Imp2 L pe &
24

Since SCAP1D is a one dimensional code, the correction term must be of the form
P,/cm?. The area the losses are integrated over is Ld/2, so

(7.2)

Ploss =

Pjogs/cm® = ——— . (7.3)

The term in equation 7.3 can be incorporated into the expression for the
power generated by the cell as follows:

T Pe d2
Peen = [Vmp - ___mpl 2e ] Imp - (7.4)

The cell efficiency is simply the power generated by the cell divided by the power
incident in the form of illumination. The optimization is identical to the statement
of problem P1, except that the above definition of the cell power is used.

Equation 7.3 is an approximate correction factor for the effects of lateral resis-
tance. As already mentioned, a very simple geometry is used in describing the top
contact design. The voltage drop that is approximated is not included in the solu-
tion of Poisson’s equation. In reality, the voltage drop would be distributed in the
emitter, but a two dimensional model would be required to simulate such an effect.
Also, the assumption of current flow perpendicular to the junction in the bulk of
the device is used in the derivation of the correction term.

7.2 Results

In this section, the optimizations for the six cases used in the previous chapter
are repeated using an objective function based on equation 7.4. In equation 7.4,
the value of d represents the distance between the fingers of the top contact. Runs
were made at the values of 1 mm, 2 mm, and 3 mm. Also, the sensitivity analysis
for the front junction depth was repeated for each case and value of finger separa-
tion. The sensitivity analysis was done by holding the front junction depth fixed
and re-optimizing the other design variables. The results are presented in tables
7.1-7.18 and figures 7.2-7.7 (located at the back of the chapter). The design asso-
ciated with the optimal value of the front junction depth is printed in bold in the
tables.
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The column headings of tables 7.1-7.18 are:
Ir eff = efficiency with lateral resistance correction included (%)
V. = open circuit voltage (mV)
Je = short circuit current density (mA/cm?)
note: The lateral resistance correction is not included in the calculation J.
Ir ff = fill factor using lateral resistance correction.
C.¢r = collection efficiency (%)
p. = sheet resistance of the emitter (€/0J)
eff = efficiency without correction for lateral resistance (%)
ff = fill factor without correction for lateral resistance
XL = cell thickness (1m)
X = front junction depth (um)
X} = back junction depth (um)
log Dy = log of the net front surface doping concentration ([P atoms - B
atoms}/cm?>)
log Dg = log of the net bulk doping concentration ([B atoms - P atoms}/cm?)
log Dy = log of the net back surface doping concentration ([B atoms - P
atoms)/cm?)

The results for case 1 are given in tables 7.1-7.3 and figure 7.2. In figure
7.2, the dashed line is the sensitivity analysis for X, given in chapter 6 which did
not include a correction for lateral resistance. The other three curves represent the
sensitivity analysis with d equal to 1 mm, 2 mm, and 3 mm. The trend is
significantly different for the analyses that were done with a correction for lateral
resistance included. The very thin junction depth of 0.1 um is no longer optimal.
In fact, the sensitivity analyses suggest that with a correction for lateral resistance
included the efficiency would drop off sharply if a junction depth of 0.1 um were
used.

The results agree with the statements made in the previous section that the
lateral resistance could be reduced by increasing the front junction depth while
lowering the front surface doping concentration. The doping concentrations, how-
ever, are not equal to those found in the sensitivity analysis illustrated in table 6.6 .
Comparison of the front surface doping concentrations for the same front junction
depth show that those in table 7.1 are always higher than those in table 6.6. Com-
parison of table 7.1 with 7.2 and 7.3 shows a further increase in the front surface
doping concentration as the distance between the grid fingers is increased. This is
due to the fact that higher doping concentrations reduce p..

Figure 7.2 illustrates that for this case it is better to increase the junction
depth to decrease the lateral resistance. The least favorable alternative to reduce
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the detrimental effects of lateral resistance is to retain a thin emitter and resort to
very heavy doping to reduce the sheet resistance. The conclusions given above
become more pronounced as the grid finger spacing, d, is increased. Also, as in
chapter six, tables 7.1-7.3 show that the optimal value of the front surface doping
concentration varies significantly as the front junction depth is changed.

Heavily doping a thin emitter results in a substantial drop in V,. due to
increased Auger recombination and bandgap narrowing in the emitter. When X is
held fixed at a small value, the sheet resistivity remains fairly high because the
only way to decrease the lateral resistance is to raise the front surface doping con-
centration. Comparison of the results at 0.1 um shown in tables 7.1-7.3 show that
further increasing the front surface doping concentration is a bad tradeoff, so it is
better to allow for a more substantial loss due to lateral resistance. Even the
efficiencies without the lateral resistance correction factor (eff column) are less for
the thin emitters as a result of the effects of heavy doping.

The optimality of a front junction depth of 10 pm (for d = 3 mm) occurs
because the cell being modeled in this case has excellent front surface passivation.
The main reason for designing a cell with a very thin junction is to avoid recombi-
nation at the front surface. If the front surface is well passivated, it is no longer
critical to have very thin junctions. For example, the above observation is critical
to the successful design of IBC cells. In IBC cells, all the current is collected at
the back of the cell (X; = Xp).

The results for cases 2 and 3 are similar to those for case 1. The optimal
value of the front junction depth decreases due to the higher front surface recombi-
nation velocity in cases 2 and 3. Because the doping concentrations are higher (for
a given value of X), tl:c value of p. is lower.

The solutions for case 4 are significantly different than the first three cases.
The poorly passivated front surface (S = 10%) results in significant recombination
at the front surface if the front junction depth is increased. In figure 7.5, this is
illustrated by the sharp decline in efficiency to the right of the optimal junction
depth.

For d = 1 mm, a front junction depth of 0.11 pum is optimal. As compared to
the optimization without a lateral resistance term, the reduction in p. is accom-
plished primarily by increasing the front surface doping concentration from 7.24 x
10! to 1.35 x 10%%. The tradeoff for increasing the front surface doping concentra-
tion is better in this case because as well as lowering p, it also helps shield the
carriers generated near the front surface from the poorly passivated surface. If the
front surface is well passivated, the benefit derived from the latter consideration is
substantially less, so that the heavy doping effects dominate the tradeoff.
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As d is increased, however, the value of the optimal junction depth increases
as in the previous cases. The doping concentration has become so high that the
tradeoff again favors increasing the front junction depth to reduce p,.

Cases 5 and 6 are similar to the first three cases.

Table 7.19 is a summary of the effect of including the lateral resistance
correction for each of the cases. The numbers refer to the absolute and percentage
difference from the optimal efficiency without the lateral resistance correction fac-
tor. The percentage difference is given in parenthesis.

Table 7.19 Effect of Lateral Resistance on Optimal Efficiency

case 1 case 2 case 3 case 4 case 5 case 6

d=lmm | -0.34 -0.39 -0.35 -0.31 -0.36 -0.32
(-1.5%) (-1.8%) (-1.6%) (-1.5%) (-1.8%) (-1.8%)

d=2mm | -0.66 -0.85 -0.78 -0.77 -0.82 -0.74
(-29%) (-3.9%) (-3.6%) (3.8%) (-4.1%) (-3.8%)

d=3mm -1.02 -1.35 -1.26 -1.26 -1.34 -1.23
(-44%) (-6.2%) (-5.9%) (-6.2%) (-6.7%) (-6.2%)

Case 1, which models a cell with excellent front surface passivation, is affected the
least by the inclusion of the correction for lateral resistance.

In the above analysis, the shadowing and correction factor was taken as 7%
regardless of the value of d. In general, as the spacing between the grid fingers is
reduced the shadowing will increase (it may be possible to reduce the thickness of
the grid lines, but there is a lower limit on the thickness imposed by the metaliza-
tion technology). The analysis was not intended to compare the efficiencies at
different spacings but rather to illustrate the change in the optimal design that
occurs as the front contact grid is changed. The results imply that the front contact
design must be specified (e.g., from an optimization that trades off shadowing, grid
resistance, and lateral resistance) to determine which design is optimal or that the
- front grid and the cell must be optimized simultaneously. The latter would require
a two (or three) dimensional model.
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7.3 The High-Low Emitter (HLE) Design

In the previous section, including the lateral resistance correction resulted in
an absolute decrease in efficiency of about 0.3 to 0.4 percentage points in
efficiency for each case. Furthermore, not taking into account the effects of sha-
dowing, for each increase of 1 mm in the grid spacing the efficiency dropped
another 0.4 to 0.6 percentage points for each case.

One method that has been suggested to reduce the effects of lateral resistance
is the High Low Emitter (HLE) (1.4]. In this section, the effectiveness of the HLE
will be investigated by solving the optimization with the lateral resistance correc-
tion factor included.

Figure 7.8 shows the doping profile used to model the HLE cell. The profile
follows a complementary error function from x=0 to x=X;. The doping concentra-
tion is then constant from x=X; to x=X, (different doping profiles were tried here,
but the profiles tried did not make a significant difference). At x=X, the doping
concentration changes from D, to Dy in step fashion. The high-low junction at the
back of the device is defined in the same manner as in the previous sections. The
HLE profile introduces two new variables into the optimization, X, and D,.

Tables 7.20-7.22 show the optimal solution for each case for d equal to lmm,
2mm, and 3mm. The benefit of the HLE design is minimal for all the cases for
each value of d. In fact, the HLE design leads to a reduction in efficiency for case
4 (S¢=10*" atd =2 mm and d = 3 mm. There are two entries in tables 7.21 and
7.22 for case 4. The first is the point that the optimization converged to, which
effectively eliminated the high-low junction (X;= X.). In the second entry, the
value of X, was fixed at 0.1 pm to force the HLE design. The latter case results in
a reduction in efficiency, illustrating the importance of keeping a strong gradient in
the doping concentration near the front surface when the front surface is poorly
passivated. The optimization of the HLE design attempts to achieve a strong gra-
dient by reducing D, to the lower bound.

The lower bound for X; was then decreased from 0.1 to 0.04 um. This still
represents a practical design with an HLE because the high-low junction can be
used to reduce the lateral resistance. The efficiencies that resulted were only
slightly better than those given in tables 7.20 - 7.22.

7.4 Summary

An approximate lateral resistance correction factor was derived and appended
to the objective function. The conclusions of the optimizations are as follows:
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The sensitivity analysis for the front junction depth changes drastically as
compared to the results of chapter six. Without the lateral resistance correc-
tion, the efficiency monotonically decreased with increasing front junction
depth. Where as, with the lateral resistance correction, the efficiency gen-
erally fell off sharply at very thin junction depths, reached an optimal value,
and then fell off very slowly (except case 4 S¢ = 10% in which the decrease
beyond the optimal junction depth was rather sharp).

The optimal values of the front junction depth and the front surface doping
concentration vary significantly with the spacing of the grid fingers.

For cells with good front surface passivation (< 10%), the most effective means
of reducing the sheet resistivity of the emitter is to increase the front junction
depth, as opposed to heavily doping a thin emitter.

For cells with poor front surface passivation (> 10%), the tradeoff favors
increasing the front surface doping concentration more than in cells with good
front surface passivation. However, particularly for wider grid spacings, it is
still beneficial to increase the front junction depth to decrease the lateral resis-
tance.

The high-low emitter (HLE) design does not show significant improvement in
efficiency (< 0.2 percentage point) over the conventional emitter design.
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Efficiency vs Fixed Front Junction Depth

Case 1 [t =2 ms, sf = 100 cm/s, sb = 100 cnmy/s]
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Front Junction Depth pm

d is the distance between grid fingers in mm

used in the approximate correction for lateral resistance.
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figure 7.2
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Efficiency vs Fixed Front Junction Depth

Case 2 [T =1 ms, sf = 1000 cm/s, sb = 1000 cm/s]

@ O D M O = omn a1
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d is the distance between grid fingers in mm

used in the approximate correction for lateral resistance.

figure 7.3
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Efficiency vs Fixed Front Junction Depth

Case 3 [t =1 ms, sf = 1000 cm/s, sb = o cm/s]
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d is the distance between grid fingers in mm

used in the approximate correction for lateral resistance.
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Efficiency vs Fixed Front Junction Depth
Case 4 [T = 0.4 ms, sf = 10,000 cm/s, sb = 10,000 cn/s]
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d is the distance between grid fingers in mm

used in the approximate correction for lateral resistance.

figure 7.5
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Efficiency vs Fixed Front Junction Depth
Case 5 [t = 0.1 ms, sf = 1000 cm/s, sb = 1000 cm/s]
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Front Junction Depth pm

d is the distance between grid fingers in mm

used in the approximate correction for lateral resistance.

figure 7.6
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Efficiency vs Fixed Front Junction Depth
Case 6 [t = 0.1 ms, sf = 1000 cm/s, sb = o cm/s]
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:\1
/ 2=dinmm
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»
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Front Junction Depth pm

d is the distance between grid fingers in mm

used in the approximate correction for lateral resistance.

figure 7.7
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Table 7.1 Sensitivity of Front Junction Depth, Case 1,d = 1 mm, Op =2

Ir Ir log log log
eff Voe Jo ff Cenr Pe efl ff Xo X¢ Xp Do Ds D,
22075 6879 39.18 819 996 5152 22.67 .841 2766 010 04 1969 1645 18.47
22250 692.1 39.09 .822 996 4446 2076 .841 2511 020 04 1938 1642 18.62
22331 6940 3898 826 995 4037 2280 .843 2362 030 06 1918 1654 1878
22450 6938 39.06 .828 996 3176 2282 842 2493 0SS0 06 1900 1647 18.71
22524 6954 39.03 830 996 2850 2285 .842 2430 075 06 1877 1648 18.77
22573 6960 39.03 .831 996 2593 22.87 .842 2427 100 06 1862 1646 18.66
22623 6959 39.03 833 996 2084 2286 .842 2434 1S5S0 06 1845 1644 18.60
22642 6948 3906 834 995 1676 2284 842 2518 200 06 1839 1644 1873
22684 6954 39.07 835 995 1524 2286 841 2543 250 02 1827 1644 18.89
22681 6964 3898 835 996 141.8 2285 841 2363 297 02 1818 1644 1873
22680 6956 39.01 836 995 1272 2283 .841 2446 350 02 1812 1644 18.87
22679 695.2 39.06 .835 995 1303 22584 841 2539 354 02 1809 1642 18.89
22678 6948 3908 835 995 1236 2283 .841 2575 394 02 18.04 1641 1896
22678 6940 39.10 836 995 1131 2281 .840 2663 449 02 1800 1640 18.89
22671 694.2 3907 836 995 1067 22580 .840 2608 499 02 1796 1640 1890

Table 7.2 Sensitivity of Front Junction Depth, Case 1,d =2 mm, Op = 2

4 4 log log log

eff Vo Je I Cur  pe ef ff X, X X» Do Dg D
20906 6696 39.27 795 996 2456 2206 .839 3000 010 02 2007 1638 18.86
21405 6786 39.24 804 995 2067 237 840 3000 030 02 1958 1643 18.87
21629 6839 3922 806 995 1958 2255 .840 2918 0S50 02 1932 1640 18.89
21777  6RSB 3917 BRIl 994 1751 2260 841 287 070 02 1917 1648 1890
21921 6887 39.12 814 994 161.1 2267 842 2755 100 02 1898 1650 1889
22,161 6908 39.13 820 994 1254 2275 841 2815 200 02 1864 1647 1891
22261 6913 3915 823 993 1080 2277 841 2908 300 02 1842 1646 1890
22315 6915 39.13 825 993 942 2276 841 2886 400 02 1828 1644 1890
22346 6923 3907 826 993 834 2273 841 2730 500 02 1819 1641 1895
22352 6919 39.06 .827 993 770 227t 840 276.1 555 02 1816 1640 1894
22357 6917 3909 .827 993 764 2271 840 2833 600 02 1810 1638 1893
22359 6913 39.10 .827 99.2 733 2270 840 2887 650 02 18.06 1637 1893
22361 6924 39.02 828 993 721 2270 B840 269.0 700 02 18.01 1638 18.97
22359 6917 39.04 828 992 667 2267 839 2781 800 02 1796 1635 1895
22351 691.0 39.06 .828 99.1 63.6 2265 839 2873 900 02 17.89 1635 1893
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Table 7.3 Sensitivity of Front Junction Depth, Case 1,d = 3 mm, Oy = 2

r ¥ log log log

eff Ve Je fr Cent Pe eff fr Xy X¢ Xy Do Ds Dy
19.829 6487 3923 7179 994 1360 2126 .835 3000 010 2.8 2036 1637 1833
20424 6637 39.15 .78 993 1294 2178 838 3000 030 3.0 1983 1645 1832
20717 6704 3915 789 993 1243 2202 839 3000 050 28 1958 1642 13.20
20981 6758 39.13 793 992 1170 2221 340 3000 080 238 1934 1642 1829
21.103 6783 39.09 .79 99.1 1129 2229 840 2977 .00 29 1922 1647 184
21469 6844 39.08 803 99.1 97.6 2249 841 2959 200 27 1884 1646 1835
21.656 6862 39.07 308 99.1 846 2254 .841 2965 3.00 27 1863 1644 1836
21.816 689.0 39.08 310 99.1 783 2264 841 2923 400 02 1845 1642 1862
21.891 6909 3901 812 992 732 2266 841 2716 500 02 1831 1641 1865
21939 6912 3899 814 992 678 2265 840 2710 600 02 1821 1639 1865
21973 6908 3896 816 990 609 22.61 .840 2724 700 02 1817 1638 1865
21991 6912 389 817 991 589 2261 839 2708 800 02 1308 1634 18.63
22008 6905 3893 819 989 S33 2256 839 2755 900 02 1806 1635 1875
22010 6908 3892 319 990 526 2256 839 2726 1000 02 1797 1632 18.8
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Table 7.4 Sensitivity of Front Junction Depth, Case 2, d = 1 mm, Oy = 2

ir ¥ tog log log
off Ve I ff G Pe eff ff XL Xy Xy Do Dy Dy
21.284 662.8 39.11 821 992 3646 2171 .837 3000 0.10 02 1988 1629 19.52
21419 663.7 39.10 .825 99.1 2643 21.73 .837 2975 030 02 1946 16.28 1952
21461 6639 3907 827 99.1 2241 21.72 .837 2973 050 02 1925 1629 19.52
21476 6639 39.05 828 990 1986 21.71 .837 2974 0.70 02 19.11 1628 19.52
21477 6639 3904 829 990 1942 2170 .837 2973 0.75 02 1908 1629 19.52
21478 6639 3903 329 990 1888 21.70 837 2976 0.84 02 1901 1629 1952
21.476 663.7 39.01 829 989 1733 2168 .837 298.2 1.00 02 1895 1628 19.52
21451 663.1 389 .830 988 1486 21.62 .837 300.0 1.50 02 1876 1626 1952
21412 6626 3889 .831 986 1340 2157 .837 3000 2.00 0.2 18.61 16.25 19.52
21.367  662.1 38.83 831 984 1232 2151 .837 3000 2.50 02 1849 1624 19.52
21319 6615 3877 831 983 1155 2145 .836 3000 3200 02 1839 1622 19.52
Table 7.5 Sensitivity of Front Junction Depth, Case 2, d = 2 mm, Oy = 2
¥ ¥ log log log
eff Va Je fl  Cenr Pe eff ff XL X Xe Do Dy Dy
20406 6520 39.10 .800 99.1 194.1 2131 .83 2993 0.10 02 2020 1628 1957
20733 6570 3906 .808 990 1577 21456 836 2993 030 02 1974 1628 19.58
20862 659.1 39.02 811 989 1416 2152 837 2993 0.50 02 1952 1628 19.52
20930 6603 3898 813 988 1315 2154 .837 2993 0.70 02 1937 1629 19.52
20985 661.1 3892 816 987 1198 2154 837 3000 1.00 02 1920 16.29 19.53°
21004 6616 3889 816 986 1160 2154 .837 3000 1.20 02 1910 1630 19.56
21.017 662.1 38385 817 985S 1119 2153 .837 300.0 1.50 0.2 1897 16.30 19.57
21.021 6619 3882 818 984 1052 2150 837 3000 170 02 1893 1626 19.54
21.022 6619 3882 818 984 1058 2151 837 3000 171 2 1892 1627 1953
21015 6622 3874 819 082 1017 2148 837 3000 200 02 1883 1632 1958
21.001 6620 3869 820 981 955 2144 837 300.0 250 0.2 1870 16.28 19.56
20975 661.7 38.64 .820 980 91.8 2139 .837 300.0 3.00 0.2 18.59 16.25 19.56
Table 7.6 Sensitivity of Front Junction Depth, Case 2, d = 3 mm, Op=2
ir -4 log iog log
eff Ve Ju ffl Ce Pe eff fr XL X X Do Dg Dy
19538 6415 3910 779 99.1 1319 2092 .834 300.0 010 02 2039 1624 1951
19999 6481 3899 791 98.8 1059 2110 .835 3000 030 0.2 1995 1626 19.52
20.185 6524 3892 795 98.7 99.8 2122 .83 300.0 0.50 0.2 19.71 16.26 19.52
20.292 6549 388 .797 985S 95.6 21.28 .836 300.0 0.70 0.2 19.55 16.28 19.52
20389 6573 3879 800 983 91.2 2133 .83 2999 1.00 02 19.37 16.29 19.52
20460 659.1 38.71 802 98.1 86.5 2135 .837 2997 1.40 0.2 19.19 16.29 19.52
20497 6599 3865 .804 98.0 826 2134 837 3000 1.80 0.2 19.06 16.27 19.51
20515 660.5 3859 805 97.8 794 2133 837 3000 2.20 0.2 1895 16.27 19.50
20520 6608 3852 806 976 766 2130 .837 3000 260 02 1885 1627 19.49
20510 6620 3839 .807 976 756 2127 837 2M.0 3.00 0.2 1875 16.27 19.48
20486 660.8 3833 809 97.2 69.8 21.19 .837 300.0 400 0.2 1858 1625 1949
20432 6609 3818 810 969 66.7 21.10 .836 2852 5.00 0.2 18.42 16.21 19.51

112



Table 7.7 Sensitivity of Front Junction Depth, Case 3,d = 1 mm, Oy = 2

& ¥ log log log
eflf Ve J T Gn Pe eflf fr XL X¢ X Do Dy D,
20790 651.4 3888 821 986 327.1 2116 .836 3000 010 366 1994 1617 914
20912 652.1 38.88 825 98.6 2404 21.19 .836 300.0 030 366 1952 1614 19.08
20950 6524 3886 826 985 2067 21.19 836 300.0 050 366 1931 16.14  19.08
20967 652.5 38.83 827 984 1805 21.17 .836 300.0 080 366 1910 1613 19.08
21.007 6538 3830 828 984 1711 2120 836 300.0 1.00 500 1898 1612 1893
20963 652.4 3879 828 983 159.2 21.14 .836 300.0 120 366 189 1613 19.08
20950 6522 3876 829 983 1493 21.12 .835 300.0 150 366 1878 1612 1907
20920 651.7 3873 829 98.2 1386 21.08 .835 300.0 200 36.6 18.61 16.08 19.07

Table 7.8 Sensitvity of Front Junction Depth, Case 3,d = 2 mm, O, = 2
¥ ¥ log Tog log
eff Vo Je ff Car  Pe i fr X¢ Xy Xs Do Ds DL
20060 6432 3888 8302 986 1749 2086 .84 300.0 0.10 500 2026 1613 1892
20339 6474 3883 809 984 1421 2099 835 3000 030 50.0 19.81 1612 1892
20446 6493 3879 812 983 1295 21.04 .83 300.0 050 500 1959 1612 1892
20502 6505 3875 813 982 1218 2106 .83 300.0 070 500 1943 1612 1893
20.546 651.3 3871 815 98.1 113.7 21.06 .835 3000 1.00 500 1925 16.10 18.92
20574 652.1 3864 816 98.0 1053 2105 835 300.0 150 500 1904 16.09 1893
20.574 6524 3857 818 978 98.8 21.02 .835 300.0 200 - 500 1888 16.10 1893
20.560 6523 3851 818 976 937 2098 .83 3000 250 S0.0 1875 1608 1892
20.538 6522 3845 819 97§ 89.8 2094 .83 300.0 300 S0.0 1863 1606 18.92
Table 7.9 Sensitivity of Front Junction Depth, Case 3,d = 3 mm, Oy, = 2
u ¥ log log log
eff Ve Je ff Car  Pe eff ff Xy X, X Do Ds DL
19.296 6312 3887 786 985 1084 2041 832 3000 0.10 S00 2049 1608 1890
19.679 640.0 3878 .793 983 98.1 2069 .333 3000 030 S50.0 2000 1607 18.92
19.831 6439 38.69 796 98.1 93.1 2078 834 3000 050 500 1977 1609 18.92
19917 646.2 3861 798 979 894 2083 835 3000 070 500 1960 1612 1892
19946 647.2 3857 7199 978 883 2084 835 300.0 080 S0.0 1953 1614 1892
19992 6484 3854 300 97.7 8.3 2087 .83 300.0 1.00 S00 1942 1613 18.92
20.056 6503 3844 802 974 81.7 2088 .83 300.0 1.50 500 1920 1614 1892
20.084 651.2 3837 804 973 786 20.88 835 300.0 200 S00 1904 1614 1893
20.093 651.6 3831 805 971 75.8 2086 .83 300.0 20 S0.0 1890 16.12 18.93
20094 6515 3831 805 971 753 2085 835 300.0 252 500 1890 16.12 18.93
20.090 6519 3823 806 969 730 2082 .835 300.0 300 500 1879 1613 1893
20064 651.8 3812 808 96.6 695 2076 .835 3000 400 500 1860 1611 18.93
20.022 6513 38.03 808 964 66.5 2068 835 3000 500 S50.0 1845 16.07 18.93
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Table 7.10 Sensitivity of Front Junction Depth, Case 4,d = 1 mm, Op; = 2

I ¥ 1og log log
eflf Ve Ju . Cm P eff ff XL X X Dy Dg Dy
20048 630.0 3876 .821 983 2212 2030 .831 2923 0.10 500 20.15 1602 18.68
20051 6295 3878 821 983 2063 2029 831 3000 011 500 20.13 1601 18.69
20.037 6299 38.65 .823 98.] 182.7 2024 831 28S.1 020 S0.0 1990 1604 18.68
19942 6290 3852 .823 98.2 1455 2011 .830 2519 040 S0.0 19.67 1582 18.69
19922 6287 3845 824 975 1508 20.09 .831 300.0 050 500 19.51 1602 18.68
19773 6284 38.19 .824 970 1491 1994 831 2774 075 500 1928 1599 18.68
19634 6279 3791 825 964 1265 1977 831 27258 100 500 1920 1595 18.69
19337 6263 3745 824 953 1259 1947 830 2652 150 500 1893 1591 1869
19077 6228 3723 823 944 1413 1922 .829 3000 200 500 1862 1591 18.68
18.811 6209 3689 .821 939 1429 1896 .828 2621 250 S0.0 1843 1573 18.69

Table 7.11 Sensitivity of Front Junction Depth, Case 4, d = 2 mm, O, = 2

¥ ¥ log tog log
eff Ve Ju ff Cen Pe eflf ff XL X¢ Xy Do Dg Dy
19.489 6248 3875 .805 984 1340 200 .830 2836 010 500 2040 1597 1859
19.587 6265 3858 810 978 107.2 2007 .830 2974 030 500 1997 1597 1863
19588 6265 3855 811 977 1046 2006 830 3000 031 500 1996 1600 18.66
19.545 6273 3835 813 972 96.9 1998 830 300.0 050 500 1975 1599 1866
19.413 6274 3802 814 964 898 1981 .830 3000 080 500 1954 1597 18.66
19305 6274 3781 814 959 907 1970 .830 2925 1.00 SO0 1941 1595 1861
19.032 6264 3734 814 946 875 1940 .830 3000 150 500 19.19 1588 18.72
18756 6253 3687 813 935 884 1912 .829 3000 200 SO0 1899 1586 18.69

Table 7.12 Sensitivity of Front Junction Depth, Case 4, d = 3 mm, Op,; = 2

Ir Ir log log log

eff Ve Je ff  Car  Pe eff fr XL X Xy Dy Dg DL
18912 617.0 3875 .791 982 873 1981 .828 3000 010 S00 2060 1595 18.72
19.050 6205 3859 796 978 794 1986 .829 3000 020 500 2031 1596 18.69
19.096 6227 3846 .798 915 763 1987 830 300.0 030 500 20.14 1597 1871
19.103 6238 3831 .79 971 729 1983 S£30 3000 040 500 2002 1597 18.71
19.088 6249 3819 800 968 724 1981 .830 3000 050 500 1991 1598 1873
19.060 6254 38.07 .801 96.5 71.2 1976 .830 3000 060 S0.0 19.82 1597 18.73
18982 6265 37.81 .801 959 708 19.67 .830 3000 080 495 1967 1599 18.74
18.889 6269 3757 802 953 69.8 1956 .830 3000 1.00 495 1955 1599 1875
18.628 627.1 37.02 803 938 692 1927 .830 3000 150 495 1932 1597 1874
18.364 6260 36.55 .803 927 677 1898 .829 300.0 200 495 19.17 1588 1873
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Table 7.13 Sensitivity of Front Junction Depth, Case S, d = 1 mm, Oy = 2

tr ¥ log log log
efl Vo Ju i Cerr Pe efl fr X X¢ X» Do Ds Dy
19.588 6386 37.34 821 989 2701 1987 833 1000 010 02 2003 1629 1921
19.652 6395 37.31 824 988 2214 1989 833 1000 030 02 1956 1629 19.25
19.663 6.8 137.277 324 987 2040 1988 833 1000 050 02 1930 1630 19.25
19663 6398 3728 824 988 2033 1988 833 1000 052 02 1929 1629 1927
19659 6398 3727 825 987 1994 1987 833 1000 070 02 1910 1629 19.27
19.642 6397 37.22 825 986 1879 1934 833 1000 1.00 02 1839 1629 19.22
19606 639.1 37.19 825 985 18304 1979 833 1000 150 02 1860 1628 19.23
19563 6385 37.14 825 984 1729 1974 833 1000 200 02 1838 1627 19.14
Table 7.14 Sensitivity of Front Junction Depth, Case 5, d =2 mm, Oy = 2
r k log log log
eff Ve I ff C'“ Pe eflf i XL X, Xy Do DB DL
18906 6283 3733 806 989 1423 1951 832 1000 010 35 2035 1619 1843
19.138 6348 3723 810 986 1292 1968 .833 1000 030 02 1985 1630 19.21
19.183 6365 37.19 810 985 1279 1972 833 1000 050 02 1958 1629 19.22
19.196 637.2 37.15 811 984 1249 1972 833 1000 070 02 1940 1629 19.20
19200 6369 3712 812 983 1171 1969 333 1000 077 02 1938 1628 1923
19.195 6376 37.09 .812 983 1214 1970 .833 1000 1.00 02 1920 1628 1921
19.169 6379 37.02 812 980 1194 1967 833 100.0 1.50 02 1893 1628 19.20
Table 7.15 Sensitivity of Front Junction Depth, Case S,d = 3 mm, Op = 2
u ¥ log log log
eff Ve Ie ff Cer  Pe eff ff X, X, Xy Dg Ds Dy
18311 6203 3728 792 9838 938 1920 .830 1000 010 02 2055 1620 1811
18.533 6269 37.13 7196 983 869 1935 831 1000 030 02 2005 1621 1815
18598 6305 3704 79 981 89.0 1943 832 1000 050 04 1978 1623 1821
18618 6318 3697 797 979 879 1944 832 1000 070 02 1960 1622 18.18
18684 6340 3693 798 978 867 1949 832 1000 080 02 1953 1627 19.27
18684 6339 3692 .798 978 859 19.48 £32 1000 081 02 1953 1627 1927
18684 6348 3687 798 97.7 865 1949 832 1000 1.00 02 1940 1628 19.34
18.647 6357 3671 799 972 859 1944 833 1000 1.1 02 1931 1640 18.86
18601 6346 3678 797 974 89.6 1943 832 1000 150 09 1913 1626 1833
18561 6344 3674 796 973 903 1939 832 1000 200 1.0 1893 1622 18.21
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Table 7.16 Sensitivity of Front Junction Depth, Case 6, d = 1 mm, O = 2

r x log log Tog
eff Ve I fl Cen Pe eff fr XL X¢ Xy Do Ds D,
19.102 628.0 37.06 .821 982 2390 1935 .831 100.0 010 243 20.11 16.06 19.00
19.156 6290 37.02 823 98.1 2022 1937 .831 1000 030 243 196 1607 19.02
19.164 6295 3699 .823 98.0 193.0 193¢ .832 1000 050 243 1936 1607 19.05
19.165 6296 3698 3823 979 1903 1936 832 100.0 052 243 1935 1608 19.03
19.162 6295 369 823 979 1827 1935 831 1000 070 243 19.18 1608 19.01
19.148 6296 3694 823 978 1805 1933 .831 1000 100 243 1895 1607 19.04
19.121 6293 3690 824 977 1744 1930 .831 1000 150 243 18.66 1606 19.00
19.090 6289 3687 823 976 1725 1927 .831 100.0 200 243 1842 1605 19.00

Table 7.17 Sensitivity of Front Junction Depth, Case 6, d = 2 mm, Op = 2

s ¥ log log log
eff Ve I 7 G Pe eff ff XL X; Xy Dy Dp D,
18571 6215 37.05 807 981 131.1 19.12 830 1000 010 242 2040 1604 19.01
18699 6250 3695 810 979 1182 19.19 .831 1000 030 242 1991 16.06 18.99
18731 6263 3690 811 977 1148 1920 .831 1000 050 242 1966 1605 1899
18737 627.1 3683 811 976 1124 1920 .831 1000 067 24.1 1950 1607 19.04
18.737 6271 368 8i1 976 1121 1920 831 1000 070 242 1948 1607 19.00
18730 6279 3677 811 974 1131 19.19 831 100.0 1.00 242 19.26 1607 19.03
18705 6282 3670 811 972 1122 19.16 .83l 100.0 150 242 19.00 1606 1203
18676 6284 3665 811 97.1 1144 19.14 831 100.0 200 242 1877 1607 19.03

Table 7.18 Sensitivity of Front Junction Depth, Case 6, d = 3 mm, Op, =2

it | 4 log log log

eff Ve Je ff Cenr Pe eff I XL X¢ Xp Do Dp DL
18.027 6138 3704 793 98.1 87.0 1884 .829 1000 0.10 243 2060 1597 18.95
18.203 620.1 3683 797 975 81.5 1896 .830 100.0 030 242 20.10 1602 1904
18246 6227 3673 7198 973 808 1899 830 1000 0.50 243 1985 1602 19.05
18.256 624.1 3668 798 97.] 82.1 19.01 .830 100.0 0.70 243 1966 16.01 19.00
18256 6242 3666 .798 97.1 819 1901 831 1000 072 243 19.65 16.02 19.00
18.255 6245 3663 .798 97.0 813 1900 .30 100.0 0.80 243 1959 1602 19.00
18249 6256 3655 798 96.8 82.7 19.00 .831 100.0 1.00 243 1945 16.06 19.03
18220 6266 3645 798 96.6 840 1898 .831 100.0 1.50 243 19.19 1606 19.04
18.188 626.8 3641 .797. 964 85.0 1896 .83} 100.0 200 243 1899 1603 19.00
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Table 7.20 High-Low Emmitter, Cases 1-6,d = 1 mm, Oy = 2

I I log log log log
efl Ve Ju ffl Cen Pe eff fr Xo X Xe Xy Do D. Ds Dy
22796 695.6 39.16 .837 99.5 1099 2292 .841 2534 0.1 57 02 1876 17.22 1643 1895
21.580 667.2 3891 .831 989 150.1 21.7S .838 293.1 0.1 5.6 02 1937 1692 1629 19.53
21.086 6564 3868 .830 98.3 1510 2124 .83 3000 01 56 500 1937 1689 16.16 1893
20.057 6304 3871 .82 983 2078 2028 .831 3000 01 21 500 2011 1618 16.01 18.70
19.717 6248 37.70 .837 95.8 1944 1957 .831 1000 01 22 02 1942 1729 1630 19.34
19.208 6182 37.87 .821 962 1873 1941 .829 1000 0.1 2.6 240 1947 17.16 16.11 19.02

Table 7.21 High-Low Emmitter, Cases 1-6,d =2 mm, Olﬂ =2

r Ir og log log log

efl Ve Joe ffl  Cer Pe eff ff X X X X, Do D. Ds Dy
22528 6944 3907 .830 993 61.3 2281 .841 2515 0.1 102 0.2 1876 1722 1638 189
21.201 6667 3869 .822 983 893 2161 .838 2906 0.1 57 02 1933 1730 1628 19.51
20.718 6560 3844 821 976 877 21.09 .836 3000 0.1 57 500 1934 1729 16.15 1893
19.587 626.8 3852 .811 979 1049 20.05 .830 300.0 04 07 500 20.00 14.17 1599 18.71
19515 6269 3861 .806 98.1 1325 20.10 .831 300.0 0.1 23 50.0 2031 1641 1599 1871
19.259 6236 3756 .82 954 1204 1945 830 1000 01 36 02 1943 1736 1628 1933
18.776 617.2 37.68 .807 957 1153 1928 .829 100.0 0.1 42 239 1945 1726 1609 19.03

Table 7.22 High-Low Emmitter, Cases 1-6,d = 3 mm, O = 2

u v log log log log

eff Ve Joe ff Ceq Pe eff ff Xp X Xe X Do D. Dg Dy
22.181 6934 3901 .820 99.1 536 2274 841 2640 01 79 02 1877 1751 1638 1896
20773  666.1 3846 811 977 674 21.46 838 2955 01 62 02 1932 1746 1627 1953
20.314 6555 38.19 .812 97.0 639 2093 .836 3000 01 7.2 S0.0 1934 1738 16.14 18.92
19.103 6244 38.26 .800 972 742 19.83 .8330 3000 05 04 S50.0 2002 1400 1588 13870
18902 6185 3863 .791 98.1 900 19.80 .829 3000 01 3.0 500 2056 1596 1594 1868
18734 622.0 3735 .806 949 876 19.28 .830 1000 0! S4 0.2 1942 1733 1623 1925
18.280 616.1 3743 .793 95.1 86.1 19.11 829 1000 01 5.6 24.0 1943 1730 1606 19.02
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8 High Efficiency Concepts

In this chapter, the results from the previous two sections will be used along
with several modifications to the SCAPID code to define cell designs which
achieve high efficiencies. Two new objectives, the maximization of V. and J,
will be used to determine the limitations on efficiency and explore possible
improvements in cell design. Light trapping will be used to define higher
efficiency designs, and results will be given for the six cases defined in chapter six.
A limit analysis will be carried out to determine how cell efficiency is affected by
the different physical mechanisms that limit cell efficiency and to define upper
bounds for efficiency. The results given in this work will be compared to the
theoretical upper bounds.

8.1 Maximizing V. and J
In this section, two new objective functions, the maximization of V. and Jg,
will be considered. The designs that optimize V. and J, will have efficiencies
that are less than the designs found in chapter six that optimize efficiency. The
results of this section, however, will determine to what extent V. or J. limit the
efficiency of the cells discussed in chapter 6.

In chapter six, the sensitivity analysis with respect to cell thickness suggested
that, for cells with both surfaces passivated, the best values of open circuit voltage,
fill factor, and collection efficiency were attained by thin cells. This can be vali-
dated by maximizing V.. Also, comparing the designs for maximum V. and the
designs for ‘maximum Jg will illustrate the tradeoffs that must be made in design-
ing a cell for maximum efficiency.

The numerical methods used to implement the maximization of V,. and Jg
are similar to those described in chapter four for the maximization of efficiency.
The solution associated with a previous function call in the optimization is used to
initiate SCAP1D so that the numerical effort required to complete an optimization
is significantly reduced. The methods used are described in appendix A.
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Table 8.1 shows the results of maximizing the open circuit voltage for each of
the six cases defined in chapter six. If both surfaces are passivated, the optimal
thickness for maximum V. is very thin. Case six, which models a cell with an
ohmic back contact, also results in a thin cell because of the low value of SRH
lifetime used (Tyg = 0.1 ms).

The bulk doping concentration also varies significantly between the cases that
do and do not have both surfaces passivated. If both surfaces are passivated, the
optimal Dy for maximum V. is at or near the lower bound of 10'%. The low bulk
doping, coupled with a thin cell thickness, results in excellent collection efficiency
as well as maximum V.. For cells with poor surface passivation, the optimal
value of Dy for maximum V is around 2 x 10"7.

The differences in the optimal value of Dy illustrate two diametrically oppo-
site cell designs for increasing V.. For cells with both surfaces well passivated,
the emphasis is on decreasing the bulk recombination to increase V.. This is
achieved with the low bulk doping and the thin cell thickness. If the back surface
is not well passivated, however, decreasing the cell thickness results in significant
back surface recombination. Hence, the tradeoff is no longer favorable. Instead,
the cell thickness is increased to isolate the generated minority carriers, and the
bulk doping concentration is raised to increase the integrated base doping.

Table 8.2 shows the results of maximizing the short circuit current density for
the six cases defined in chapter six. The optimal value of J,. shows significantly
less variation than V... There is a slight decrease in the optimal value of J in
cases five and six reflecting the lower value of SRH saturation lifetime modeled in
these cases.

The optimal cell design for maximum Jg also shows little variation. The bulk
doping is at the lower bound to preserve the SRH lifetime and diffusion length.
The cell thickness is at the upper bound to increase the absorption of the incident
energy. The thick BSF, which was optimal when maximizing efficiency for a cell
with a poorly passivated back surface, is eliminated to reduce the bulk recombina-
tion. The back surface recombination is decreased instead by a thin heavily doped
BSF.

The emitter is doped significantly lower to maximize Ji than to maximize
V. The situation is reversed for the BSF. This reflects the need to avoid Auger
recombination near the front surface, where most of the carriers are generated,
when maximizing Jg.

Table 8.3 shows the percent improvement of the maximized values of V, and
J,. compared to the V. and J, that results when the efficiency is optimized (from
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Table 8.1 Maximization of Vo, Cases 1-6

log log log
case  eff Vo Ju Vg I Car Xo X Xo Do Dg Do Oy
21360 7322 3464 6453 8342 1000 235 0.10 02 1884 1400 1892
20290 683.1 3572 5972 .832 99.9 367 0.10 02 1938 1444 1945
19930 6666 3563 5845 .839 903 3000 0.10 104 1929 1746 1934
18700 6384 3513 5575 834 90.2 2045 0.10 14 1982 1735 1922
17500 673.8 3183 5836 316 9.9 1.0 0.10 02 1932 1400 1937
17930 6419 3350 5606 .834 91.9 512 0410 168 1920 1723 19.18

O AW
NN N

Table 8.2 Maximization of Js, Cases 1-6

log log log
case eff Vo Ju Ve ff Cerr XL X Xo Do Ds D On
21930 7027 3944 6005 791 1000 3000 0.10 16 18.13 1400 19.05
19.870 647.1 3943 5488 779 1000 300.0 O0.10 02 1699 1400 19.60
18790 5966 3943 5106 799 1000 3000 0.10 0S5 18.87 14.00 20.60
18.240 6173 3940 5147 750 999 3000 010 02 1902 1400 19.87
15720 5919 3932 4639 676 99.7 300.0 0.10 02 19.03 1400 19.55
15650 5747 3932 4595 692 99.7 3000 0.10 07 1840 1400 20.51

[- WAV I RV S
NN

Table 8.3 Percent Improvement in V. and Jo

v

o JE‘.

casel 44% 12%
case2 22% 09%
caseld 1.5% 14%
cased 11% 1.6%
caseS 48% 5.3%
case6 1.6% 6.1%
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chapter six). Disregarding the large improvements in Jg in cases 5 and 6, which
are the result of raising the upper bound on cell thickness from 100 um to 300 pm,
in all the cases but one there is more to be gained in V than in J,.. Furthermore,
the values for J are at or near the upper bound for an optical path of 600 pm (see
figure 3.1), and there is very little improvement to be gained by further increasing
the optical path (figure 3.2 suggests that by 600 um 98% of the photons of energy
greater than 1.1eV have been absorbed). An upper bound for V. is not as easily
established, but, as expected, the V. ’s in table 8.1 do not approach the theoretical
maximum of 1.1 V.

Both surfaces must be passivated for a design to exist that significantly
increases V... The better the surface passivation (e.g., case 1), the greater the
increase in V... Assuming both surfaces are passivated, a lower SRH lifetime
(e.g., case 5) results in a greater percentage increase in V. by changing to a thin
cell design.

8.2 Light Trapping

The results of chapter six and the previous section suggest that significant
improvements in cell efficiency can be made for cells with both surfaces passivated
if the absorption of thin cells can be increased. This has also been reported in the
literature by several authors [e.g., 8.1-8.3]. The absorption of thin cells can be
increased by increasing the optical path that the incident illumination must pass
through before leaving the cell (without increasing the cell thickness). By assum-
ing the use of a perfect back surface reflector, the optical path is twice the cell
thickness (Op; = 2). By taking advantage of the high index of refraction of silicon
and using surface texturing (or other light scattering schemes), it is possible to use
refraction and/or total internal reflection to trap the light in the cell so that the opti-
cal path is many times the cell thickness [8.2, 8.4-8.7]. This section will investi-
gate the use of light trapping in designing high efficiency silicon solar cells. It was
necessary to modify SCAP1D to include light trapping in the code (see appendix
A).

For all the results in this section, the effects of lateral resistance will be calcu-
lated using a grid spacing, defined in chapter 7, of d = 1 mm. The reflection and
shadowing factor is 7%. The doping profile makes use of the complementary error
function, as illustrated in figure 2.1.

Tables 8.4-8.6 show the results of optimizing cases 1-6 with O, = 2 (summar-
ized from results given in chapter 7), O = 10, and O,; = 20. For all the cases, the
optimal value of the cell thickness decreases as absorption is enhanced. For almost
all the cases, the optimal values of the doping concentrations decrease slightly as
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Table 8.4 From chapter 7, Op, = 2, cases 1-6

4

log log log
case eff Voe Jee ff Cetr Pe eff ff XL X¢ X» Do Ds Dy
1 22684 6954 3907 835 995 1524 2286 841 2543 250 02 1827 1644 18.89
2 21478 6639 3903 829 990 1888 21.70 .837 2976 084 02 1901 1629 19.52
3 21007 6538 3880 .828 984 1711 2120 .33 3000 1.00 500 1898 1612 1893
4 20051 6295 3878 .821 983 2063 2029 831 3000 OIJ1 500 2013 1601 18.69
S 19663 6398 3728 824 988 2038 1938 .833 1000 052 02 1929 1629 1927
6 19165 6296 3698 823 979 1908 1936 832 1000 052 243 1935 1608 19.03
Table 8.5 Light trapping included, Oy, = 10, cases 1-6
Ir k log log log
case eff Vo Joe f Cen Pe eff fT XL Xr Xe Do Dg Do
1 23750 7130 3984 836 998 1790 2397 844 822 227 02 1821 1640 18.88
2 22309 6733 3989 831 995 1986 2255 839 1126 083 02 1899 1628 19.43
3 21617 6550 39.88 828 983 1770 2183 .83 2620 084 500 19.09 1606 1893
4 20680 6324 3974 823 983 1848 2090 .832 2051 018 S00 199 1592 18.62
5 21.109 6535 39.12 826 993 2263 2137 836 473 050 0.2 1924 1635 19.29
6 20260 6315 3898 823 975 1841 2047 832 911 069 241 19.19 1603 1896
Table 8.6 Light trapping included, Oy, = 20, cases 1-6
Ir ir log log log
case eff Voc Jac ff Cent Pe eff ff XL Xy Xy Do Dp DL
1 2399 7165 4003 837 999 1774 2421 844 594 238 02 1818 1634 18.8%
2 22501 6739 4019 .831 995 1958 2274 840 1039 085 02 1899 1626 19.42
3 21787 6551 4018 .828 982 1680 2199 .83 2644 101 SO0 1900 1604 1891
4 20851 6329 4006 .822 983 1958 21.09 .832 2045 0.15 SO0 2002 1593 1863
S 21464 6584 3946 826 99.5 2330 2174 837 334 054 02 1917 1636 19.30
6 20434 6318 3929 823 975 1829 2065 832 873 058 236 1931 1600 1896
Table 8.7 Percent Improvement in Efficiency, V., and J. (Opt = 2 as baseline)
eff Vo Jec
Op=10 Op=20| On=10 Ou=20| Opx=10 Op =20
case 1 4.7% 5.8% 2.5% 3.0% 2.0% 2.5%
case 2 3.9% 4.8% 1.4% 1.5% 2.2% 3.0%
case 3 29% 3.7% 0.2% 0.2% 2.8% 3.6%
case 4 3.1% 4.0% 0.5% 0.5% 2.5% 3.3%
case 5 7.4% 9.2% 2.1% 2.9% 4.9% 5.8%
case 6 5.7% 6.6% 0.3% 0.3% 5.4% 6.2%
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absorption is enhanced.

In table 8.7, the effect of light trapping on cell efficiency, V., and Jy is
compared to the results of chapter 7 (given in table 8.4). Cases 5 and 6 show the
largest percent improvements in efficiency. The large increases in Jg in cases 5
and 6 reflect the fact that the upper bound for cell thickness was 100 um in chapter
7.

Only the cells that have good front and back surface passivation show
improvement in V., and they fail to achieve the maximum V. solved for in the
previous section at O, = 2 (including light trapping in the maximization of V.
results in only small increases in the maximum value of V. associated with
increasing the excess carrier concentration). The main reason these cells fail to
achieve the maximum V. is the maximum efficiency cell design has significantly
higher bulk recombination. The cell designs for maximum V. are thinner and the
bulk doping is at the lower bound. It was shown in section 6.7 that there is a local
maximum for efficiency associated with very thin cells and very light base doping
at high lifetimes and low values of surface recombination velocities. Although this
local maximum exist for cases 1 and 2, it is not the global maximum with respect
to efficiency.

8.3 Limit Analysis

In this section, an upper bound will be set for the best efficiency that can be
achieved by a silicon solar cell by making use of the SCAPID and optimization
codes. This will be achieved by disabling many of the physical mechanisms which
lower the efficiency (e.g., recombination, shadowing and reflection, and bandgap
narrowing). The upper bound will then be tightened by including unavoidable
losses in the optimization runs. The results will then be compared to the
efficiencies calculated in the previous section.

The first upper bound on cell efficiency requires only the spectrum of the
incident illumination and the bandgap of silicon. Figure 8.1 illustrates the genera-
tion rate versus the optical path for the AM1.5 spectrum of concentration 1.2022
(IOOmW/crnz) with a reflection and shadowing factor of 0%. Assuming each pho-
ton of energy greater than the bandgap generates one electron hole pair and the
incident energy is almost entirely absorbed by 2000 um (checked by integrating the
AM1.5 spectrum for the number of photons greater than the bandgap of silicon),
the maximum possible current density for a silicon cell is 43.36 mA/cm?. Assum-
ing each photon contributes the maximum energy to the load (1.1 eV per photon),
an upper bound for the efficiency of a silicon solar cell is 47.7%.
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The next bound is calculated by considering only the effects of radiative
recombination. To do this it was necessary to modify SCAP1D to include radia-
tive recombination (see appendix A). Auger recombination, SRH recombination
and bandgap narrowing are all disabled. SRH recombination is disabled by setting
1, = 10 seconds and T, = 5 seconds (T, = 10 seconds, Too = 5 seconds, and Z,, =
Zi, = 1x 10% in equation 3.14a and 3.15b). Therefore, radiative recombination is
the dominant recombination process over the range of doping concentrations con-
sidered (1 x 10 to 4 x 10?%). The surface recombination velocities are set to
zero, and the reflection and shadowing factor is set to zero.

Table 8.8 shows the results of optimizing the cell efficiency under the above
conditions. Three optical path length factors were considered; Oy = 2, Op; = 10,
and O, = 20. The optical path length factor, Oy, is a multiplicative factor that
relates the cell thickness and the actual optical path of the incident energy. By
assuming a perfect back surface reflector, the optical path traversed by the incident
illumination is twice the cell thickness (O = 2). Optical paths greater than twice
the cell thickness are achieved by light trapping (see appendix A).

The results, = 30%, agree well with the limit calculated by Shockley and
Queisser [8.8]. In [8.8], an upper bound of 30% was calculated for the efficiency
of a silicon solar cell by considering the energy distributions of the radiation emit-
ted by 300 K (solar cell) and 6000 K (the sun) black bodies and assuming radiative
recombination as the only loss mechanism. The differences in the limits are a
result of the differences between a 6000 K black body spectrum and the AMI1.5
spectrum.

The lifetime associated with radiative recombination is a linear function of the
doping concentration. The lifetime is high enough that it is still possible to heavily
dope the emitter, bulk, and BSF to increase V.. At a doping concentration of 1 x
1017 (= Dg), the lifetime associated with radiative recombination is 4 ms.

The effect of light trapping is to decrease the value of cell thickness that is
optimal. This decreases the amount of recombination in the cell and increases the
excess carrier concentrations, both of which increase V.. For all three cases, the
optical path is long enough that over 98% of the photons of energy greater than 1.1
eV are absorbed.

The bound can be further tightened by including Auger recombination in the
model. The results are shown in table 8.9. For the case with O = 2, the effect
on efficiency is a drop of 1.0 percentage point compared to table 8.8 . The inclu-
sion of Auger recombination does not cause a larger drop in efficiency because the
optimization results in lower doping concentrations. The reductions in the doping
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Table 8.8 Radiative Recombination Only

log log log
eff Vo Ju Vp I Car X X¢ Xo Do Ds D. Oy
29250 808.5 4202 7212 861 1000 2247 018 04 1990 1677 1960 2
31.150 8524 4217 7638 867 1000 414 019 04 1990 1696 1961 10
31.793 8675 4221 7784 868 1000 232 019 05 1990 1705 1961 20

Table 8.9 Radiative and Auger Recombination

log log log
eff Vo Ju Vap I Cer Xo X¢ Xo Do Ds DL Oy
28315 7564 4234 68388 384 1000 2821 06S 0.2 1575 1598 1742 2
29803 7859 4254 7194 892 1000 555 024 02 1584 16.17 16.57 10
30.285 796.2 4257 7300 .894 100.0 31,1 010 02 1577 1627 1667 20

Table 8.10 Radiative and Auger Recombination and BGN

. log log log

eff Vo Ju Vw ff Cenr XL X X Do Ds Dy Oﬂ
28279 7553 4235 6877 884 100.0 2839 O.10 02 1483 1592 1632 2
29.758 784.4° 4255 7180 .891 100.0 562 0.11 0.2 1565 16.09 16.60 10
30.232 7944 4259 728.1 .893 100.0 319 010 02 1486 1613 1654 20

Tabie 8.11 Radiative and Auger Recombinauon, BGN, S¢= 1 cnvs, and Sy = 1 crivs

log log log
eff Ve Je Vep ff Cenr XL Xt Xp Do Ds Dv On
28.197 7536 4241 6851 .882 1000 3000 010 02 1781 15.88 1795 2
29506 7788 4277 7100 .886 100.0 698 0.10 02 1780 1598 17.86 10
29.880 7866 4287 7172 886 100.0 431 Q.10 0.2 17.82 1599 17.85 20

Table 8.12 Radiative and Auger Recombination, BGN, S¢ = 10 crmvs, and S, = 10 crvs

log log log
eff Ve Ju Ve fl Cenr XL Xt Xo Do Ds Dy Op
27.800 7499 4242 6775 874 1000 3000 010 02 1836 1400 1861 2
28.753 7609 4327 687.1 873 1000 1425 010 02 1832 1573 18.44 10
29005 7612 43.63 6872 873 1000 1431 010 02 1839 1448 1852 20
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Table 8.13 Radiative angq Auger Recombinau'on BGN, S; = 100 cns, and S, = 100

cnvs
log log log
Xr X, Dy

D) Q, O,,,
. 1891 1400 1993 5
27397 7329 4371 6520 g5 1000 3000 010 o2 1891 1400 19.13 g9
27.625 733 406 6522 g5 1000 3000 010 o3 1891 1400 1913 9o
Table 8.14 Radiative Recombmauon Sr=100 Cnvs, and S, 100 cnys
eff A"

log
X Dy Dy Dy
31.089 .

.. X 1676 2069 2
. . 1000 444 010 o3 2060 14 00 206p 10
31.689 8623 4236 M3 g 1000 269 010 o3 20.60 1400 2069 20

= 100 s, S, = 100 Cnvs, and I .

.07
log log log
oc Ju V, X x, Xy D, Dy Dy, Ou
. 6496  gss 100.0 3999 . 02 189 1400 1913
25.411 7313 4065 6503  gss 100.0 3999 010 o9 1890 1409 1913 o
25.622 7315 4098 6505  gss 100.0 3099 010 o3 1891 1400 19.13 3o
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concentrations, however, result in a decrease in the integrated doping in the base
and emitter. This results in a reduction in V.

The optimal value of the front surface doping concentration is very low (= 6 x
10'%). This implies that the emitter may be in high injection at the contacts. The
boundary conditions for the majority carrier concentration used in SCAP1D
assumed heavy doping at the contacts so that ohmic boundary conditions could be
used. If this boundary condition is violated, it would be equivalent to surface
recombination. Hence, the efficiency predicted by SCAP1D would be low.

Table 8.10 shows the results of also including bandgap narrowing in the
model. The emitter and the BSF are doped at concentrations that avoid the detri-
mental effects of heavy doping. Therefore, the change in efficiency from the previ-
ous case is minimal.

At this point one could argue that all the fundamental losses are included in
the analysis. Other losses such as SRH recombination, surface recombination, and
shadowing and reflection, although not unavoidable, are more closely related to the
technology used to produce the cell. Hence, we find that the upper limit on
efficiency is = 30% if light trapping can be successfully employed to achieve Oy =
20. The limit would be slightly higher if O, were increased. The upper limit on
efficiency is 28.3% for Op = 2. The results in the previous section fall well below
this limit.

f course, it is not possible to achieve the above limits because other loss
mechanisms exist in the cell including surface recombination, SRH recombination,
and reflection. Also, for the conventional geometry considered in this work, there
are losses associated with shadowing and lateral resistance.

The effects of surface recombination are shown in tables 8.11-8.13. The
front and back surface recombination velocities are equal, and runs were made at 1,
10, and 100 cm/s. The upper bound on efficiency is substantially decreased as the
surface recombination velocities are increased to 100 cm/s.

As the surface recombination velocities are increased, it is necessary to more
heavily dope the emitter and BSF. Also, the cell thickness is increased to isolate
the generated carriers from the surfaces. Both of the above result in higher recom-
bination. Although the collection efficiency remains approximately at 100%, the
increase in recombination and bandgap narrowing result in a substantial decrease in
the V. of the cell as the surface recombination velocities are increased.

Table 8.14, which shows the optimization results including surface and radia-
tive recombination only, illustrates that it is the combination of heavy doping
effects and surface recombination which results in the sudden decrease in the upper
bound for efficiency. If either surface recombination or heavy doping effects are
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not included in the model, a cell design can be found which achieves an efficiency
very close to the upper bound established by considering radiative recombination
only.

The effect of a 7% shadowing and reflection factor is illustrated in table 8.15.
By comparing tables 8.13 and 8.15 it is seen that not only is the short circuit
current density decreased by 7%, but the V. also decreases slightly due to a
decrease in the excess carrier concentrations. This is the same effect which results
in higher efficiencies at higher sun concentrations. The effect of the 7% shadow-
ing factor is approximately a 7.25% reduction in efficiency.

Figure 8.2 summarizes how the upper bound of efficiency is affected by each
of the loss mechanisms considered so far in this section. The largest reductions in
the upper bound are a result of heavy doping effects in conjunction with surface
recombination velocities = 10 cm/s or greater and the inclusion of the reflection
and shadowing factor.

The effect of varying the SRH saturation lifetime (T,o) has been discussed in
section 6.7. Now those results will be extended to include the effects of light
trapping and compared to the limits derived above.

In figure 8.2, cases E (table 8.11), F (table 8.12), and G (table 8.13) are each
extended by considering SRH recombination with a saturation lifetime (t,) of 100

ms, 10 ms, 1 ms, and 0.1 ms. The results of the optimizations are given in tables
8.16-8.27 .

The addition of light trapping favors the local maximum associated with thin
cells and light bulk doping. In several cases, the design associated with the global
maximum changes as O, is increased (e.g., table 8.21, 8.22, and 8.23). In generat-
ing the results given in tables 8.16-8.27, it was necessary to solve the maximization
of efficiency twice. One run was initiated from a cell with a bulk doping concen-
tration of 10'S, while the other was initiated from a cell with a bulk doping con-
centration of 10'4, If the two optimizations converged to different cell designs (for
some runs one or the other of the local maximums did not exist, as described in
section 6.7), the one with the greatest efficiency was reported.

For 1, = 0.1 ms, the optimal value of the bulk doping is never at the lower
bound. This could be due to the lower bound of 10 pm on the cell thickness. For
the local maximums associated with Dg = 104, the lower bound on cell thickness
was active. If the lower bound for cell thickness was lowered and/or Op was
increased, the local maximum associated with light bulk doping would be the glo-
bal maximum.

Figure 8.3 illustrates the effect on efficiency of including SRH recombination
at different levels on cases E, F, and G from figure 8.2. The bulk lifetime
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A = Radiative recombination only
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C = A and Auger recombination
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H=GandI'=0.07

Figure 8.2
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Table 8.16 BGN, Auger, Rad, SRH (T, = 100 ms), Sy = 1 cmvs, Sy = 1 cmvs, ' = 0
log log log
eff V“ I‘ V,, ff C,, X._ Xy X. Do D‘ DL O,.
28.006 7550 4226 6849 878 1000 2664 010 02 17838 14.00 18.06 2

29432 7799 4270 7102 .884 100.0 646 010 02 1788 1400 1795 10
29.833 7879 4281 7177 .884 100.0 400 010 02 1788 1400 1793 20

Table 8.17 BGN, Auger, Rad, SRH (Ty = 100 ms), S¢= 10 cnvs, Sy = 10 cnvs, T = 0
log log log
eff V“ J‘ Vw fT C'ﬂ XL X( X, Do Dg DL 0#

27665 7495 4242 6761 870 1000 3000 0.10 02 1840 1400 1861 2
28695 7642 4312 6890 .871 1000 1113 010 02 1837 1400 1849 10
28950 7654 4343 690.1 .871 1000 1025 010 02 1842 1400 1849 20

Table 8.18 BGN, Auger, Rad, SRH (T, = 100 ms), S¢ = 100 cmv/s, Sy = 100 cnvs, I = 0

log  log log
eff V“ J‘ V., 14 Cgﬂ xl_ X( X; Do D’ &_ Oﬂ
26474 7319 4242 6503 .853 1000 3000 0.10 02 1891 1400 19.13 2
27315 7326 4371 6511 .853 1000 3000 O0.10 0.2 1891 1400 19.13 10
27543 7328 4406 6513 .853 1000 3000 0.10 02 1891 1400 19.13 20

Table 8.19 BGN, Auger, Rad, SRH (T = 10 ms), S; = 1 cmvs, S, = 1 cmvs, T = 0

log log log
eff Ve Ju VW ff Cenr Xo X¢ Xp Do Dg D, Op
27060 7633 4130 6869 858 1000 1444 0.10 02 1786 1400 1796 2
28984 7839 4235 7107 .873 100.0 473 010 02 17.88 1400 17.92 10
29493 791.0 4257 MNM79 .8716 100.0 31,1 010 02 1785 1400 1791 20

Table 8.20 BGN, Auger, Rad, SRH (T4 = 10 ms), S¢ = 10 cmvs, S, = 10 cnvs, ' = 0

log log log
eff V“ J.‘ V.' fr Cgﬂ XL X( X. Do D‘ Dl. Ou
26724 7535 4177 6725 .849 1000 1910 010 02 1840 1400 1853 2
28.248 7683 42.78 6885 .859 100.0 705 010 02 1838 1400 1846 10
28590 7725 4299 6922 .861 100.0 504 010 02 1840 1400 1844 20
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Table 8.21 BGN, Auger, Rad, SRH (T4 = 10 ms), S¢ = 100 cmvs, S, = 100 cmvs, ' = 0

log log log
eff V,,, J.‘ Vw ff C‘“ X._ X{ Xb Do Dg D[_ 0‘1
25884 7224 4236 6361 846 999 3000 010 02 1881 1633 1899 2
26.827 7352 43.18 6499 845 1000 1239 010 02 1889 1400 1900 10
27.061 7353 4355 6500 845 1000 1266 010 02 1890 1400 19.00 20

Table 8.22 BGN, Auger, Rad, SRH (Tyg = 1 ms), S;=1cm/s, Sy = 1 crvs, T = 0

log log log
eff Vu J.‘ VW ff Cg“ XL X, X., Do Dg DL Oﬂ
24420 7046 41.14 6187 842 997 1424 010 02 1779 1655 17.79 2
26939 7928 4066 7020 .836 100.0 172 010 02 1767 1400 1770 10
27751 7977 4132 709.1 842 1000 133 010 02 1769 1400 1771 20

Table 8.23 BGN, Auger, Rad, SRH (1,0 = 1 ms), S; = 10 cm/s, Sy = 10 cnvs, ™ = 0

log log log
eff V“ J‘ V,, ff C,ﬂ Xl_ X[ X§ Do D' DL 0,.
24386 7024 4122 6167 .842 997 1497 010 02 1825 1655 1826 2
26435 7702 4145 6757 .828 1000 262 010 02 1832 1400 1836 10
27.104 7736 4199 681.2 .834 100.0 200 0.10 0.2 1831 14.00 18.37 20

Table 8.24 BGN, Auger, Rad, SRH (15 = 1 ms), S¢ = 100 cr/s, S, = 100 cmys, T = 0

log log log
eff V“ J‘ Vq, fT C,“ X,_ X{ X, Do DB DL OPI
24208 693.0 4152 6081 .841 995 1833 010 02 1879 1649 18.90 2
25704 7155 4253 6294 84S 999 578 010 02 1877 1655 1885 10
26080 721.1 4276 6349 846 999 3%3 010 02 1878 1654 1884 20

Table 8.25 BGN, Auger, Rad, SRH (1,0 = 0.1 ms), S; = 1 cnvs, Sp = 1 cmvs, T = 0

log log log
eff V“ J.‘ Vq, fT Cﬂ[ x!_ X, X, Do Dg DL OF
21.880 659.1 3968 5764 .837 992 750 010 02 1786 1644 1696 2
23906 6887 4130 6039 .840 998 254 010 02 1799 1656 1721 10
24539 7009 4162 6151 .841 999 162 010 02 1794 1658 1698 20
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Tabie 8.26 BGN, Auger, Rad, SRH (T = 0.1 ms), S¢ = 10 cr/'s, Sp = 10 cnvs, I = Q

log log log
eff Vo‘ J“ Vw ff C'ﬂ XL Xf X. Do Dg DL Oﬁ
21.871 6586 39.70 5759 .836 9.2 75.8 0.10 02 18.16 1643 17.70 2
23.880 687.2 4135 6028 .8340 99.83 262 010 02 1811 1657 17.70 10
24499 6983 41.70 6127 .841 99.9 17.1 0.10 02 18.12 16.58 17.66 20

Table 8.27 BGN, Augei‘, Rad, SRH (Tyo = 0.1 ms), S¢ = 100 cnv's, S, = 100 c/s, "' = 0

log log log
eff V.,,_ I‘ Vw ff C'“ X;_ X{ X. Do DB DL Oﬂ
21.821 6553 3983 5729 .836 9.1 820 010 02 1863 1641 1859 2
23.747 6799 4159 5962 340 997 306 010 02 1861 1653 1858 10
24309 6886 4198 6043 841 998 208 010 02 1860 1656 1858 20
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associated with cases E, F, and G is determined by radiative recombination and
ranges, since lifetime is dependent on the bulk doping, from 5000 to 500 ms. As
already observed in previous results, the higher lifetime cases are more
significantly affected by surface passivation.

A value of 1,y of 100 ms results in almost no change from the efficiencies
calculated without including SRH recombination. A small difference exists at Ty
= 10 ms. The effect becomes quite apparent, particularly at S¢ = S, = 1 cm/s, as
1,0 is further decreased to 1 ms and 0.1 ms.

All the cells benefit from increasing Oy, but the lowest lifetimes benefit the
most, since the lower lifetimes show greater decreases in bulk recombination.

The efficiencies calculated for cases 5 and 6 are substantially less than for the
same lifetime with lower surface recombination velocities even after the shadowing
and reflection factor is accounted for. Although figure 8.3 suggests that at T,y =
0.1 ms, the efficiency is insensitive to the recombination velocities up to 100 cmvs,
the efficiency does decrease when the recombination velocities are increased to
1,000 cmvs.

8.4 Summary
The main conclusions of this chapter are summarized below.

e  For cells with good front and back surface passivation, the maximum V. is
attained by thin cells with very low bulk doping (= 10'4). Where as, for cells
with poor back surface passivation, the maximum V. is attained by thicker
cells with high bulk doping (= 2 x 1017).

e  The cell design for maximum J  is a thick cell with low bulk doping and a
thin BSF.

e Light trapping results in a much thinner value of cell thickness being optimal,
particularly if both surfaces are well passivated and/or the cell is made from a
substrate with a low value of SRH saturation lifetime.

e Heavy doping effects combined with surface recombination, shadowing and
reflection, and SRH saturation lifetimes below 10 ms are.the primary mechan-
isms that lower cell efficiency.
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Appendix A Modifications to SCAP1D

This appendix describes in detail some of the modifications made to the
SCAPI1D code. These modifications include numerical (i.e., how the code arrives
at a solution) as well as modeling changes. Chapter four described modifications
that were made to adapt SCAP1D for use with the optimization code to maximize
cell efficiency. Chapter seven described a correction for lateral resistance that was
appended to the efficiency calculation. In this appendix, the numerical changes
required to optimize V.. and J,. will be described. Also, the methods used to
include light trapping, radiative recombination, and reflection calculations for thin
film coatings in the model will be described.

A.1 Maximization of V

The maximization of V. is implemented in a fashion similar to that described
in chapter four for maximizing efficiency. The first execution of SCAPID is
halted after the open circuit voltage is calculated. The solution vectors V, n, and p
are then stored.

After the optimization has changed the design variables, the next calculation is
initiated at the solution vectors and value of V. retrieved from storage. The solu-
tion vectors must first be corrected at the old value of V. to correspond to the new
design. The Newton-type algorithm is used to solve the system of nonlinear alge-
braic equations associated with the finite difference transformation of the
differential equations. The same convergence considerations, which were related to
the change in the magnitude of the design variables and the Newton-like
algorithm’s need for a good initial estimate of the solution to converge, that were
discussed in chapter four hold for this step.

Once the solution vectors have been corrected for the new design, it is neces-
sary to determine the new value of V... A linear interpolation scheme is used
since the relationship between current and voltage is almost linear near V. (see
figure 4.2). A routine was written and appended to the code. The convergence
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error of this step will profoundly effect the progress of the optimization (see sec-
tion 4.3) so tight convergence criteria were used. This step also significantly
affects the computational effort required to complete an optimization. The code
written was specialized for this application so that it would converge as rapidly as
possible to the new value of V. and was safeguarded against divergence.

The optimization proceeds iteratively, retrieving a solution stored from a pre-
vious objective evaluation to initiate the next objective evaluation, until the design
variables converge to the optimal solution.

The time required to optimize V. is comparable to the time required to
optimize efficiency. The solution strategy closely parallels the strategy described
in chapter four for maximizing the efficiency. The amount of effort required is
different if the design variables that changed value are geometric variables, since
geometric variable require that the equilibrium problem be re-solved in its entirety
and the generation rate be recalculated (see chapter 4).

A.2 Maximization of J_
The maximization of J,. differs significantly from the maximization of V, and
efficiency. This is because the voltage bias for short circuit is known, Vi, = 0.

The initial execution of SCAPID is halted after J. has been determined. This
occurs on the first solution of the nonequilibrium problem at Vy;, = 0. The solu-
tion vectors V, n, and p are then stored.

After the cell design has been changed by the optimization, which is maximiz-
ing J., the stored solution is retrieved. The solution vectors must be corrected to
correspond to the new cell design at Vy,;,, = 0. The Newton-type algorithm is used
to solve the system of nonlinear algebraic equations associated with the finite
difference transformation of the differential equations. The same convergence con-
siderations for the Newton-like algorithm that were discussed in chapter four hold
for this step.

Since the voltage bias associated with J is known and does not change as the
cell design changes, there is no need to solve the nonequilibrium problem for more
than one voltage bias. For this reason, it takes considerably less effort to maximize
Jsc than V. or efficiency (on the average 1/4 the CPU time). The difficulties
posed by convergence error are also alleviated, since one of the iterative algorithms
required to calculate the objective function is eliminated.
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A.3 Implementation of Light Trapping

Most of the results in this work have had an optical path equal to two times
the cell thickness (Op, = 2) due to the use of a perfect back surface reflector. The
SCAP1ID model has been modified to include the possibility of light trapping.
Light trapping is defined as a design which allows a solar cell to achieve an optical

path greater than twice the cell thickness.

A variety of methods have been proposed for achieving light trapping in sili-
con solar cells. Most involve the use of textured front and/or back surfaces. These
designs take advantage of refraction and total internal reflection to increase the opt-
ical path the incident illumination has to pass through before escaping the solar
cell. This results in increased number of photons being absorbed (electron-hole
pairs generated) for a given cell thickness.

The actual location where the increased generation takes place is dependent
on the design used to achieve light trapping. For example, on a textured front sur-
face light striking the side of a pyramid is refracted due to the high index of refrac-
tion of silicon. Because the textured surface is at an angle with the bulk of the
cell, the light travels a greater distance through the cell before reaching the back
surface. The increased generation will predominately occur near the front surface
due to the exponential absorption of the incident illumination. Where as, if the
back surface is textured or a light scattering back surface is provided, most of the
increased absorption will occur near the back surface.

Light trapping is implemented in SCAP1D by specifying a front surface
reflection coefficient for light reflected off the back surface. This coefficient can
be thought of as the percentage of the light that is internally reflected at the front
surface. Another input specifies the number of internal reflections off the front sur-
face. In the results described in this work, the front and back surface reflectors are
assumed to be perfect (R, = 1.0 and R; = 1.0). Hence, the optical path is equal to
two times the number of internal reflections specified times the cell thickness. The
incident illumination is assumed to remain perpendicular to the cell surfaces (this
determines where the additional generation occurs).

It is not possible to have a perfect front (or back) surface reflector. In reality,
a certain percentage of the remaining light will escape at each optical interface
(surface). This will actually occur an infinite number of times. Or, from a practi-
cal point of view, until the internally reflected energy becomes negligible in magni-
tude. However, to simulate such an occurrence would require an enormous amount
of computational effort. Hence, the more simplified approach of perfect front and
back surface reflectors were used in the results of this work.
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The inclusion of light trapping following the strategy stated above is imple-
mented using the equation that determines the generation rate at a given position,
X, in the cell. For a solar cell, the generation rate for electron hole pairs is
modeled by the equation:

Gixp=[(1-T)oae™dr (A.1)
0

A = wavelength
¢ = incident flux.

The integral is integrated numerically over the wavelength. The value G(x;) is the
accumulated generation rate by the time the incident energy has traveled a distance
equal to x;. Hence, the generation rate between x; and x;_; is equal to G(x;) -
G(x;-;) (assuming x; > x;_;). The total generation rate at a given node (TG,) in the
finite difference mesh is the sum over the number of times the incident energy
passes that node (the irradiance at each wavelength is reduced by 1-R; at the back
surface and 1-R¢ at the front surface).

0
TG, = Zﬂ G(x5) - G(x£)) (A.2)
k=1
For k=1 the values of x;¥ and xX, are the position of the midpoints between the
two adjacent nodes measured from the front surface. For k=2,...,0,; the values of
x;¥ and x%, are the distance that the incident energy has traveled through the cell
when it reaches the midpoints around node i.

A.4 Inclusion of Radiative Recombination

The orginal version of SCAPID did not include radiative recombination.
This omission is not important for most of the results reported in this work because
the lifetime associated with radiative recombination is far greater than that associ-
ated with SRH recombination at low values of doping (and possibly at high levels
of doping depending on the value of Ty,) @nd Auger recombination at high levels of
doping. However, for the limit analysis done in section 8.3 it was important to
have radiative recombination in the model.

The equation for radiative recombination is
Rrap=B (np-n?) . (A3)
The constant B is equal to 2.0 x 10713 and was obtained from [A.1].
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The lifetime associated with radiative recombination can be derived using the
assumptions described in section 3.3. Assuming a P-type substrate, the lifetime is

1
= . A.4
TRAD BN, (A.4)

The lifetime associated with radiative recombination is a linear function of the dop-
ing concentration. Figure A.1 shows the lifetime of radiative and Auger recombi-
nation as a function of the net doping concentration. Both of these lifetimes may
be considered fundamental, since they are not related to the quality of the substrate
(as the SRH lifetime is).

A.4 Thin Film Coatings

In the original version of SCAP1D, reflection and shadowing were accounted
for with the single input I. The generation rate at each node was reduced by I
(i.e., multiplied by 1-I'). This was equivalent to reducing the irradiance at each
wavelength equally.

In changing the code to include thin film coatings, it was first necessary to
separate the effects of shadowing and reflection. Shadowing was used to reduce
the active area of the cell. Hence, the calculation of the efficiency is as follows:

Voo Joo A

ff = —=p TP 3t A.
¢ Pinc Alot ( 5)

A, is the total area of the cell and A, is the area of the cell which is not sha-
dowed (i.e., A, = [1-shadow] A, where shadow is the fraction of the front sur-
face covered by the collection grid). P, is the incident energy in the illumination
per cm? (100 mW/cm? in this work). The equation above can be generalized to
include the effects of lateral resistance.

Jmp Pe d?
[fra-222), ]
eff =

Pinc Ato(

(A.6)

To maintain continuity with previous results a reflection factor was defined
which uniformly, as a function of wavelength, reduced the irradiance of the
incident spectrum. This factor has the same effect as the previous shadowing and
reflection factor. It can be set to zero if a thin film coating is being used to calcu-
late the reflectance.

Because of the high index of refraction of silicon, it is necessary to apply thin
film coatings to a solar cell to reduce the reflection. For solar cell work, the
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Electron Minority Carrier Lifetime vs Net Doping Concentation

in p-type material
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reflectance of a thin film coating is a function of wavelength for two reasons. The
complex index of refraction of silicon, ng; + i kg;, changes with wavelength (see
figure A.2, data from [A.2]), and interference effects in thin films (constructive or
destructive) are a function of the wavelength. The wavelength dependence of
interference in thin films is a function of the film thickness.

The equation for reflection with a single layer antireflection coating will now
be presented. ng is the index of refraction of the medium (glass or air), n, is the
index of refraction of the thin film, and d, is the thickness of the thin film. Let:

Ng =

=

Ng + m (A. 7)

nl -ns'+iks'
r, = — (A.8)
m +nSi"lkSi

41tnldl

by =— (A.9)

Since ng; and kg; are a function of lamda, r, is also a function of lamda. The com-
plex fraction represented by r, is expressed as a complex number by multiplying
by complex conjugate of the denominator.

) (ny —ng; ) (n +ng; ) -k
r =
(nl + nSi )2+k52i
_ 21'11 kSi
I

(n) +ng )? + k&

(A.10)

(A.11)

The amplitude and phase of the reflected wave taking into account interference in
the thin film is [A.3]:

-iA,
. Ty+r,€
reff=s ——2— (A.12)
l+rrpe
Let:
Py =1y cos(4)) + 1y sin(q)) (A.13)
Pli =Ty COS(AI) - Iy Sin(Al) (A.14)
Substituting in the appropriate expressions gives:
: n+P, +iPy
refeat M 1 (A.15)

1+r1 Plr-i-irlPli
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The reflection, R, is obtained by multiplying equation A.15 by the complex conju-
gate.

(r1+Plr)2+P12i
(1+1, P )%+ (1 P )?

(A.16)

The reflection is different for light of different wavelengths. The design of the sin-
gle layer antireflection coating is specified by the inputs ng (1.0 for air or 1.5 for
glass), ny, and d,.

The equation for reflection with a double layer antireflection coating will now
be presented. ng is the index of refraction of the medium (glass or air), n; is the
index of refraction of the thin film closest to the medium, d, is the thickness of the
thin film closest to the medium, n, is the index of refraction of the thin film closest
to the substrate, and d, is the thickness of the thin film closest to the substrate.
Let:

Ng =M
n = (A.17)
no + nl
n—=nm
= A.18
2 nl + ﬂ2 ( )

ny — Ng; + 1 kg;
fp=——— S8 (A.19)
n2+n5i-1k5i :

A _ 41tn1 dl

1= (A.20)
4ntn,d

A2=+ (A.20)

Since ng; and kg; are a function of lamda, r, is also a function of lamda. The com-
plex fraction represented by r; is expressed as a complex number by multiplying
by complex conjugate of the denominator.
(ny = ng; ) (np +ng; ) — k§
r3r = 2 2
(n2+n5i) +kSi

(A.21)

2 45)] kSi

I3 = (A.22)

(n2+ nSi )2 + kszl
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The amplitude and phase of the reflected wave taking into account interference in
the thin film is [A.4]:

"iA] —i(A‘ +Az) ‘i.Az

. r+rne '+rye +Iyryr3€

relf= 1112 3 11213 (A.23)

141 e 4r 1y @) 4o p i
Let:

Py, =1y cos(4) (A.24)
Py = -12 sin(4,) (A.25)
Py = 13, cos(A)+4Ag) + r3; sin(A+4,) (A.26)
Py; = r3; cos(A1+4A7) — 13, sin(A+4A,) (A.27)
Py, = 13, cos(A,) + r3; sin(A,) (A.28)
P3; = 13 cos(Ay) — 13, sin(Ay) (A.29)

Substituting in the appropriate expressions gives:
r +P1,+r3 P2r+rl r2P3,+i(Pu+r3P2i+r1 r2P3i)
1+l'l P1r+r1 P2,+r2P3r+i(r1 Pli+r1 P21+r2P3i)

re€=

(A.30)

The reflection, R, is obtained by multiplying equation A.30 by the complex conju-
gate.

2
_ (r1+P1,+r3P2r+r1r2P3r) +(P1i+r3P2i+r1 l'2P3i)2

(A.31)
(141, P+1 Py+1, Py )2+ (1 Py + 1 Py +1, Py, )2

The reflection is different for light of different wavelengths. The design of a dou-
ble layer antireflection coating is specified by the inputs ny (1.0 for air or = 1.5 for
glass), n;, d;, n,, and d,.

SCAPID and the optimization code can be used to design a single or double
layer antireflection coating which maximizes the generation rate in the cell. This
does not involve the solution of the differential equations for modeling solar cell
performance and is accomplished with considerably less computational effort than
the maximization of V., J,, or efficiency discussed earlier in this work. The vari-
ables associated with the antireflection coating can also be included in the maximi-
zation of V., Jg, or efficiency along with the other cell design variables discussed
earlier in this work.

152



A.S5 References

[A.1]]1.1. Pankove, Optical Processes in Semiconductors, Englewood Cliffs, N.J.,
Prentice Hall, 1971

[A.2]JH.R. Phillip and E.A. Taft, Physical Review, vol. 120, pp. 37-38, 1960
[A.3]H. Anders, Thin Films in Optics, The Focal Press, p. 26, 1967

[A.4]H. Anders, Thin Films in Optics, The Focal Press, p. 46, 1967

153




Appendix B Tables and Figures for Chapter 6

This appendix contains the figures and tables for chapter six. They are
arranged and numbered as they are referenced in chapter six.
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Parameters Held Constant

Niumination 100mW/cm® (AM 1.5)
Temperature 28 degrees C
Doping Profile erfc
Shadowing (including reflection) 7%

Auger Recombination considered

Band Gap Narrowing Slootboom Degraff model

Parameters Varied Parametrically
Front surface recombination velocity (Sy)
Back surface recombination velocity (Sy)
Minority carner lifetime (used same formulas as in last progress report)
Tyo is electron minority carrier lifetime.
Tp0 is hole minority carrier lifetime (always taken as one half T.)
For .2 ohm-cm substrate the input T,g = 2 ms, 1 ms, .4 ms gives bulk
minority camier lifetimes of 54, 30, and 13 micro seconds respectively.

Ry, (back surface reflection, 1.0 or 0.0)

Parametrers Varied Paramerrically or Optimized
Front junction depth (X))
Back junction depth (X,)
Cell thickness (X[)
Front surface doping concentration (Dg)
Bulk doping concentraton (Dp)

Back surface doping concentration (Dy)

Table 6.1 Base Input Parameters for Problem P1
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Parameters Held Constant During Optimization (see also table 6.1).

Front surface recombination velocity (Si) 100.0
Back surface recombination velocity (Sp) 100.0
Electron minority carrier lifetime ! (Tw0) 2.00
Hole minority carrier lifetime ! (T50) 1.00

Optimal Values of Decision Variables

Front junction depth (Xy) 0.10

Back junction depth (X,) 0.20

Cell thickness (XL) 230.9

Front surface doping concentration (Dg) 6.211x10!8
Bulk doping concentration (Dg) 3.038x10!6
Back surface doping concentration (Dy) 7.985x1018

Cell Performance Parameters

Efficiency 23.025
Open circuit voltage (V) 701.16
Short circuit current density (Jg) 38.983
Maximum power voltage (V) 615.63
Fill factor 0.8424
Collection efficiency 99.65
Bulk resitivity 0.509
Sheet resistance layer 1 2204.5
layer 2 21.76
Bulk lifetime 366.2
Bulk diffusion length 1017

! Values in lightly doped silicon.

Table 6.2 Optimal Solution For Case 1
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Table 6.3 Effect of BSF and BSR, case 1 (S¢ = 100 cmvs, Sy, = 100 cm/s, Tpg = 2 ms)
log log log

eff Voo Ji Vmp 7 Cor Tux Ld XL Xr Xp Do Dg Dp Oy
23.025 7012 3898 6156 842 997 3662 1017 2309 010 020 1879 1648 1890 2
22418 6954 3830 6103 842 996 370.8 1025 3000 0.10 020 1879 1648 1891 1
22481 6897 3866 6065 843 985 174.6 640 2534 0.10 O 1879 16.83 0. 2
21956 6872 3791 6041 843 985 181.6 656 3000 0.10 O 1879 16.81 0. 1

Table 6.4 Optimizations at Fixed Cell Thickness (X[ ), with bsf, case 1
log log log

eff Voo Jie Vmp 7 Cer Twouxk Ld X X Xy Dy D DL Oy
19.660 7284 31.83 6428 848 999 5977 1358 100 0.10 020 1880 1621 18.35 2
21422 T267 3479 6408 847 999 4093 1087 250 010 020 1880 1642 18385 2
22231 7224 3637 6364 846 999 358.0 1003 500 010 020 1881 1649 18.86 2
22700 7161 3751 6301 845 999 3406 973 900 010 020 1881 1652 18.87 2
22757 T6.0 3772 6284 843 999 4568 1161 1000 010 020 1882 1637 1885 2
22818 7133 3788 6275 844 999 3404 973 1100 010 020 1880 1652 18.87 2
22952 709.2 3840 627 843 998 3996 1072 1500 0.10 020 1877 1644 18.89 2
23.021 7031 3885 6175 843 997 360.2 1007 2078 010 020 1879 1649 1891 2
23.025 7015 3896 6160 .842 997 3635 1012 2265 0.10 020 1880 1649 18.88 2
23.025 7012 3898 6156 842 997 3662 1017 2309 010 020 1879 1648 1890 2
23.016 6985 39.14 6131 .82 996 376.6 1034 2661 0.10 020 18.81 1647 18.94 2
23.003 6973 39.17 6123 842 995 344.6 980 280.0 0.10 020 1882 1651 19.09 2
22946 6930 3937 6079 .84l 99.4 3853 1049 350 010 020 1881 1646 18.85 2
22893 6903 3947 6051 840 993 4140 1095 4000 0.10 020 1881 1642 19.03 2
22.832 6878 3953 6026 840 993 4349 1127 4500 0.0 020 1881 1639 19.01 2
22778 6858 39.59 6003 839 992 4634 1170 S500.0 0.10 020 1888 1636 19.27 2
22568 6804 3960 5956 839 9838 4422 1138 6500 0.0 020 19.11 1638 19.19 2

Table 6.5 Optimizations at Fixed Cell Thickness (X|), no bsf, case
log log log

eff Voo IJs vmp i Cer Twux La X X Xy Do Dg D Opl
19.140 7116 3176 6277 847 998 38.5 229 100 010 O 1877 1742 0. 2
20,824 7093 3468 6255 847 997 63.9 326 250 010 O 1878 17.24 0. 2
21612 7056 3620 620 846 995 87.1 403 500 010 O 1879 17.12 0. 2
22164 700.1 3746 6167 845 992 1162 489 1000 010 O 1879 1700 O 2
22374 6960 3807 6127 844 990 1381 549 1500 0.10 0. 1879 1693 0. 2
22459 6927 3842 6094 844 987 1566 596 2000 0.10 O 1880 16838 0. 2
22.481 6898 3864 6067 .843 985 174.1 639 2500 0.10 0. 1879 16.83 0. 2
22481 6897 3866 6065 843 985S 1746 640 2534 010 O 18.79 16.83 0. 2
22472 6874 3879 6043 343 983 1900 676 3000 0.10 O 1879 1679 Q. 2
22446 6853 3888 6021 842 982 2050 710 3500 010 O 1880 1676 0. 2
22.411 6834 3894 6004 842 98.0 2179 738 4000 010 O 18.80 16.73 0. 2
22371 681.8 3898 5988 842 979 2300 763 4500 0.10 O 18.80 16.71 0. 2
22330 6803 39.01 5973 841 977 241.3 787 5000 0.10 0. 18.80  16.69 0. 2
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Table 6.6 Optimizations at Fixed Front Junction Depth (Xy), case 1

log log log
eff Voo Jo Vmp 7 Cer Toux La XL Xr Xp Do DL O
23.047 7018 3898 6162 .842 997 3683 1021 231.1 004 020 1904 1648 1892 2
23.038 7015 3899 6159 842 997 369.1 1022 2312 006 020 1893 1648 1893 2
23.031 7013 3899 6158 842 997 3703 1024 2311 008 020 1885 1648 1893 2
23.025 7012 3898 6156 842 997 3662 1017 2309 010 020 1879 1648 1890 2
23.007 7005 3899 6150 842 997 3740 1030 2324 020 020 1863 1647 1893 2
22995 7002 3899 6147 842 997 3754 1032 2322 030 020 1854 1647 1893 2
22986 6996 39.02 6141 842 997 3834 1045 2368 040 020 1846 1646 1893 2
22978 6994 3902 6139 842 997 3826 1044 2366 050 020 1841 1646 1893 2
22971 6993 3901 6139 842 997 3818 1043 2355 060 020 1836 1646 1893 2
22958 699.1 3902 6135 842 997 3968 1067 2351 0.80 020 1828 1644 1893 2
22948 6982 39.04 6129 842 996 3858 1050 2415 100 020 1825 1646 1893 2
22926 6975 39.06 6120 841 996 4025 1076 2455 150 020 1812 1643 1893 2
22906 6968 39.07 6113 841 996 4101 1088 2487 200 020 1805 1642 1892 2
Table 6.7 Optimizations at Fixed Back Junction Depth (X3), case 1
log log log
eff Voo Je Vmp 1 Cer Tk La X Xf Xy Dy Dg Dy Oy
23.090 7031 3899 6173 842 997 3682 1020 2298 010 005 1886 1648 19.90 2
23.048 7018 3899 6162 842 997 3677 1020 2311 010 0.0 1879 1648 1923 2
23.025 7012 3898 6156 842 997 3662 1017 2309 010 020 1879 1648 1890 2
23014 7009 3898 6153 842 996 3698 1023 2311 010 030 1880 1648 1880 2
23.006 7007 3898 6151 .842 997 3758 1033 2311 010 040 1878 1647 1870 2
23000 7005 3898 6150 842 997 3800 1040 2309 0.10 050 1880 1646 1866 2
22979 6996 39.00 6142 842 996 3808 1041 2358 010 1.00 1879 1646 1847 2
22967 699.1 3901 6137 842 996 3845 1047 2380 O1IC 150 1879 1646 1836 2
22957 6988 39.02 6134 842 996 3902 1057 2383 0.0 200 1879 1645 1828 2
Table 6.8 Optimizations at Fixed Front Surface Doping Concentration (D), case 1
log log log
eff Voo s Vmp 1 Cet Tk Lg X Xf Xy Dy Dg Dp Opl
22947 6984 3903 6129 842 997 3994 1071 2380 010 020 1789 1644 1892 2
22987 6996 39.01 6142 842 997 379.1 1038 2361 010 020 1819 1646 1894 2
23014 7008 3898 6153 842 997 3692 1022 2307 0.0 020 1849 1648 1893 2
23.025 7012 3898 6156 842 997 3662 1017 2309 0.10 020 1879 1648 1890 2
23006 7004 3900 6149 842 997 3797 1039 2338 010 020 1909 1646 1893 2
22917 6963 39.10 611.1 842 996 4010 1074 2541 0.10 020 1940 1644 1892 2
22690 6872 3929 6026 .840 99.6 4520 1153 3000 0.10 0.20 1970 1637 18.97 2
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Table 6.9 Optimizations at Fixed Bulk Doping Concentration (Dg), case 1

log log log
eff Voo Jc Vmp I Cet Tux La Xo X Xy Do D DL Oy
22623 7176 3868 6144 815 999 13007 2099 1728 010 020 18.85 1558 1895 2
22814 7107 3892 6125 825 999 961.0 1777 2049 010 020 1881 1588 1894 2
22968 7038 3904 6136 836 99.8 6279 1397 2290 0.0 020 1881 1618 1895 2
23025 7012 3898 6156 842 997 3662 1017 2309 010 020 1879 1648 1890 2
22947 7015 3872 6176 845 993 194.4 686 2084 0.10 020 1878 1678 18.89 2
22.640 7012 3820 6177 845 989 95.1 428 1665 0.0 020 1879 17.08 18.85 2
22.026 698.8 3731 6154 845 983 426 246 1123 010 020 1879 17.39 1881 2
Table 6.10 Optimizations at Fixed Back Surface Doping Concentration (Dy), case 1
log log log
eff Voo Jc Vmp M Cert Thuxk Lda XL X Xy Do Dg DL Oy
22957 6987 3902 6134 842 996 3808 1041 2394 0.0 020 1879 1646 18.00 2
22990 700.0 3900 6146 842 996 3784 1037 2337 0.0 020 1879 1647 1830 2
23.014 701.0 3897 6155 842 996 3662 1017 2293 010 020 1879 1648 18.60 2
23.025 7012 3898 6156 842 997 3662 1017 2309 0.10 020 18.79 1648 1890 2
23.011 7004 3901 6149 842 996 3771 1035 2359 010 020 1879 1647 1921 2
22.943 6969 39.12 6115  .84] 99.6 4059 1082 2614 010 020 1879 1643 1951 2
22.780 6906 39.25 840 995 460.8 1167 3000 0.10 020 1880 1636 19.81 2
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Efficiency VS. Cell Thickness
Case 1 [t =2 ms, sf = 100 cm/s, sb = 100 crvs]
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Efficiency vs Front Junction Depth
Case 1 [t = 2 ms, sf = 100 cm/s, sb = 100 cnvs]
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Efficiency vs Back Junction Depth
Case 1 [T = 2 ms, sf = 100 cm/s, sb = 100 cr/s]
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Efficiency vs Front Surface Doping
Case 1 [t = 2 ms, sf = 100 cm/s, sb = 100 cm/s]
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Efficiency vs Bulk Doping
Case 1 [t =2 ms, sf = 100 cn/s, sb = 100 cnv/s]
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Efficiency vs Back Surface Doping
Case 1 [t = 2 ms, sf = 100 cm/s, sb = 100 cmy/s]
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Parameters Held Constant During Optimization (see also table 6.1).

Front surface recombination velocity (S¢)  1,000.0
Back surface recombination velocity (S,)  1,000.0
Electron minority carrier lifetime ! (Ta0) 1.00
Hole minority carrier lifetime ! (T50) 0.50

Optimal Values of Decision Variables

Front junction depth (Xp) 0.10

Back junction depth (X,) 0.20

Cell thickness (Xp) 280.1

Front surface doping concentration (Dg) 2.153x1019
Bulk doping concentration (Dg) 1.989x1016
Back surface doping concentration (Dy) 3.214x101°

Cell Performance Parameters

Efficiency 21.871
Open circuit voltage (Vo) 668.2
Short circuit current density (Js) 39.063
Maximum power voltage (Vimp) 584.86
Fill factor 0.8379
Collection efficiency 99.23
Bulk resitivity 0.74
Sheet resistance layer 1 988.0
layer 2 25.37
Bulk lifetime 260.4
Bulk diffusion length 885

! Values in lightly doped silicon.

Table 6.11 Optimal Solution For Case 2
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Table 6.12 Effect of BSF and BSR, case 2 (S¢ = 1,000 cnv's, Sp = 1,000 cnv/s, Ty = 1 ms)

log log log
eff Voo Jo Vmp o Ceor Toux Ly XL Xf Xy Dy Dg DL Oy
21.871 6682 3906 5849 838 992 2604 885 2801 010 020 1933 1630 1951 2
21335 6669 38.18 5838 838 992 2454 855 3000 010 020 1933 1633 19.51 1
20717 6618 3733 S99 839 946  T27 398 3000 010 O 1931 1693 0. 2
20383 6622 3670 583 839 954 680 381 3000 010 O 1931 1696 O. 1
Table 6.13 Optimizations at Fixed Cell Thickness (X ), with bsf, case 2
log log log
eff Voo Jsc¢ Vmp a1 Cer Touw La XL Xy Xy Dy D Dp Oy
18212 680.1 3182 5972 841 999 4131 154 100 0.0 020 1933 1600 1940 2
19928 6810 3478 5980 841 999 3079 976 250 010 020 1933 1620 1938 2
20789 680.1 3634 5970 841 999 2640 893 SO0 010 020 1934 1629 1939 2
21432 6773 3766 5941 840 997 2500 865 1000 0.10 020 1934 1632 1942 2
21698 6745 3832 5912 840 99.6 2498 864 1500 010 020 1933 1632 1944 2
21.821 6719 3871 5886 839 995 2537 872 2000 010 020 1934 1631 1946 2
21.858 6700 3892 586 838 993 2565 878 2400 010 020 1934 1631 1946 2
21.867 669.1 3899 5858 838 993 2564 877 2600 010 020 1934 1631 1946 2
21871 6682 3906 5849 838 992 2604 885 28001 010 020 1933 1630 1951 2
21.870 6674 39.12 S840 838 992 2606 88 3000 0.10 020 1933 1630 1949 2
21.864 6666 39.16 5833 838 991 2606 886 3200 010 020 1933 1630 1948 2
21.855 6658 39.20 5824 837 99.0 263.5 892 3414 0.0 020 1933 1629 19.50 2
21.803 6631 3930 5797 837 988 2723 909 4139 010 020 1932 1627 1960 2
21746 6614 3931 5782 836 985 2564 877 S000 010 020 1941 1631 1962 2
Table 6.14 Opumizations at Fixed Cell Thickness (X|), no bsf, case 2
log log log
eff Voo s Vmp 0 Cer Toux La X X Xy Dy Dg D Opl
17286 6602 31.24 5784 838 98] 193 157 100 010 0. 1928 1747 0. 2
18759 6603 3389 5785 838 974 306 219 250 010 0. 1928 1730 0. 2
19490 6604 3520 5787 838 967 400 264 SO0 010 O 1931 1719 0. 2
20080 6610 3622 5793 839 959 499 308 1000 010 0. 1931 1709 0. 2
20364 6615 3671 5796 839 954  S69 337 1500 010 O 1930 1704 0. 2
20533 6618 3700 5799 839 951 627 360 2000 010 0. 1931 17.00 O 2
20640 6618 3719 5799 839 948 679 380 2500 010 O. 1928 1696 0. 2
20717 6618 3733 5799 839 946 727 398 3000 040 0. -1931 1693 0. 2
20773 6617 3744 5798 838 945 777 416 3500 010 0. 1931 1690 0. 2
20816 6617 3752 S797 838 944 814 429 4000 010 0. 1931 1688 O 2
20847 6614 3760 5794 838 944 859 445 4500 0.10 0. 1929 1686 0. 2
20873  661.1 3767 5791 838 944 907 461 5000 010 0. 1930 1683 O 2
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Table 6.15 Optimizations at Fixed Front Junction Depth (Xf), case 2
log log log

eff Voo Jc Vmp 7 Cer Twoux La XL Xy Xy Do D Dp Opi
21.895 6688 3907 5856 .8338 99.2 261.2 887 2807 006 020 1947 1630 19.51 2
21.871 6682 3906 5849 838 992 2604 885 2801 010 020 1933 1630 1951 2
21.837 6669 39.09 5836 .838 99.2 2683 901 2868 020 020 19.16 1628 19.52 2
21.814 666.1 39.10 5829 837 992 2690 902 2924 030 020 1905 1628 19.53 2
21.79S 6659 39.08 5827 838 99.2 265.2 89S 289.1 040 020 1898 1629 19.51 2
21.778 6653 39.10 5820 837 99.2 2746 913 2947 050 020 1891 1627 19.52 2
21.763 665.1 3907 5819 .837 99.1 2669 898 2933 060 020 1886 1628 19.51 2
21707 6640 3905 5308 .837 99.0 2778 920 2963 1.00 020 1871 1626 19.54 2
21.643 6629 39.02 5797 837 989 2883 940 3000 1.50 020 1853 1624 1951 2
21.581 6622 3896 5790 .837 988 2955 953 3000 200 020 1843 1622 19.52 2

Table 6.16 Optimizations at Fixed Back Junction Depth (X}), case 2
log log log

eff Voo Jc Vmp # Cer Tux La X X Xy Dy D D Opi
22036 6723 39.09 5886 .838 993 2407 845 2801 0.10 0.05 1943 1634 20.60 2
21927 6694 3909 5859 838 993 259.1 883 2824 010 O0.10 1932 1630 19.89 2
21871 6682 3906 5849 838 992 2604 885 2801 0.10 020 1933 1630 19.51 2
21.847 6675 3907 584.1 838 992 2674 899 2819 0.10 030 1934 1628 19.37 2
21.831 667.1 39.07 5838 838 99.2 2706 905 2825 0.10 040 1934 1628 19.28 2
21.819 6667 3907 5834 838 992 270.1 905 2857 010 050 1933 1628 19.20 2
21.783 6656 39.08 S8B23 837 99.2 2787 921 2900 0.10 100 1933 1626 19.02 2
21.761 6654 39.06 582.1 837 992 2844 932 2813 010 150 1933 1625 1892 2
21.746 6647 39.07 5816 .837 99.1 2809 925 2806 0.10 200 1934 1625 18.85 2

Table 6.17 Optimizations at Fixed Front Surface Doping Concentration (Dyg), case 2
log log log

eff Voo Js Vmp o Cer Toux La XL Xy Xp Dp D Dp Oy
21.738 663.8 39.11 5807  .837 99.2 268.7 902 2929 010 020 1843 1628 1953 2
21.802 6660 3908 5828 .838 992 266.6 898 284.2 0.0 020 1873 1628 19.50 2
21.850 6674 39.08 S584.] 838 99.2 2619 888 2849 0.0 020 1903 1630 19.51 2
21.871 6682 39.06 5819 838 992 260.4 885 2801 010 020 1933 1630 19.51 2
21.833 6667 39.10 5834 838 992 270.0 904 2889 0.10 020 1963 1628 19.51 p
21.663 6613 39.15 5782 837 99.3 2935 949 3000 0.10 020 1994 1623 1951 2
21.251 6498 39.19 S67.1 834 994 3517 1054 3000 010 020 2024 1611 1951 2
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Table 6.18 Optimizations at Fixed Bulk Doping Concentration (Dp), case 2

log log log
eff Voo Jsc Vmp 7 Cer Touxw La XL X¢ Xo Do DL Opl
21.376 6735 3896 5762 .B1S 999 7404 1593 2132 010 020 1937 1540 19.54 2
21.629 6697 39.15 5782 825 998 5873 1404 2524 0.10 020 1935 1570 19.52 2
21.809 6675 39.19 5815 833 996 4149 1157 2790 010 020 1934 1600 19.52 2
21.871 6682 3906 S349 838 992 260.4 885 280.1 0.10 020 1933 1630 1951 2
21.797 670.1 38.74 5875 840 986 148.0 630 261.7 010 020 1932 1660 19.47 2
21.547 672.1 38.15 5898 340 977 79 417 2190 0.0 020 1931 1690 1944 2
21.068 6725 37.27 5903 841 96.6 38.6 258 161.1 0.0 020 1929 1720 19.39 2
Table 6.19 Optimizations at Fixed Back Surface Doping Concentration (Dy ), case 2
log log log
eff Voo Jsc Vmp M Cer Thux Lds Xy Xy Xp Dy Dg Dp Oy
21747 6646 3907 5815 .837 99.1 2716.6 917 2938 0.10 020 1933 1626 18.60 2
21.806 6665 3906 S833 838 99.2 266.7 898 2835 010 020 1933 1628 18.90 2
21.851 6677 3906 5844 838 99.2 260.5 886 2806 010 020 1933 1630 19.21 2
21.871 6682 3906 5849 K38 992 260.4 88§ 2801 010 020 1933 1630 1951 2
21.840 6666 39.12 5833 837 992 270.6 906 3000 0.0 020 1933 1628 19.81 2
21.699 6630 39.11 519.7 837 99.2 307.5 975 3000 010 020 1933 1620 20.11 2
21.356 6543 3909 S713 835 99.1 387.1 1113 3000 0.10 020 1934 1605 2041 2
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Efficiency VS. Cell Thickness
Case 2 [t = 1 ms, sf = 1,000 crv's, sb = 1,000 cm/s]
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figure 6.13
Optimal bulk doping for fixed cell thickness (no bsf)
Case 2 [t =1 ms, sf = 1,000 cmv/s, sb = 1,000 crvs)
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Efficiency vs Front Junction Depth
Case 2 [T = 1 ms, sf = 1,000 crvs, sb = 1,000 cmv/s]
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figure 6.15
Optimal front surface doping for fixed front junction depth
Case 2 [t =1 ms, sf = 1,000 cm/s, sb = 1,000 cmvs]
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figure 6.16
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Efficiency vs Back Junction Depth
Case 2 [t = 1 ms, sf = 1,000 cm/s, sb = 1,000 cm/s]
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Optimal back surface doping for fixed back junction depth
Case 2 [t = 1 ms, sf = 1,000 cmvys, sb = 1,000 cnv/s)
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' Efficiency vs Bulk Doping
Case 2 [t = 1 ms, sf = 1,000 cm/s, sb = 1,000 cm/s]
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figure 6.20
Optmal cell thickness for fixed bulk doping
Case 2 [T = 1 ms, sf = 1,000 cmv/s, sb = 1,000 cnv/s)
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Efficiency vs Back Surface Doping
Case 2 [t = 1 ms, sf = 1,000 crmvs, sb = 1,000 cmv/s]
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figure 6.22
Optimal cell thickness for fixed back surface doping
Case 2 [t = 1 ms, sf = 1,000 cm/'s, sb = 1,000 cm/s]
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Parameters Held Constant During Optimization (see also table 6.1).

Front surface recombination velocity (S;) 1,000

Back surface recombination velocity (Sy) oo
Electron minority carrier lifetime! (z) 1.00
Hole minority carrier lifetime ! (T50) 0.50

Optimal Values of Decision Variables

Front junction depth (Xp) 0.10

Back junction depth (Xp) 50.0

Cell thickness (XL) 300.0

Front surface doping concentration (Dg) 2.157x1019
Bulk doping concentration (Dg) 1.368x1016
Back surface doping concentration (D) 8.572x1018

Cell Performance Parameters

Efficiency 21.355
Open circuit voltage (Vo) 656.5
Short circuit current density (J¢.) 38.903
Maximum power voltage (V) 573.9
Fill factor 0.8362
Collection efficiency 98.62
Bulk resitivity 1.04
Sheet resistance layer 1 1010.1
layer 2 5.28
Bulk lifetime 339.5
Bulk diffusion length 1032

! Values in lightly doped silicon.

Table 6.20 Optimal Solution For Case 3
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Table 6.21 Effect of BSF and BSR, case 3 (S¢ = 1,000 crvs, Sy, = oo cm/s, Tyg = 1 ms)

log log log

eff Voo I vmp f Cert  Toulk Lqy Xp X Xp Do Dg DL Oy
21355 6565 3890 5739 836 986 3395 1032 3000 0.0 500 1933 16.14 1893 2
20.882 656.5 38.02 5742 .837 9838 299.4 960 3000 0.10 S00 1933 1622 1895 1
20.059 662.0 36.13 S80.! .839 916 4.1 274 3000 0.10 0. 19.29 17.17 0. 2
19.849 6620 3576 S80.1 .339 929 41.0 269 3000 0.10 0. 1930 17.18 0. 1

Table 6.22 Optimizations at Fixed Cell Thickness (XL), with bsf, case 3
log log log

eff Voo J Vpp A Cet Twux Lds XL X Xp Dgp Dg Dp Opl
16.158 6259 31.03 5455 .832 975 7769 1635 100 0.10 29 1933 1531 2006 2
18341 6443 3408 5630 .835 979 642.7 1475 250 0.10 93 1935 1560 19.56 2
19.569 653y 3577 5720 837 983 5283 1324 500 010 205 1936 15.80 19.23 2
20.525 659.1 37.19 S768  .837 98.5 4387 1194 1000 0.10 398 1936 1596 1896 2
20951 6597 3793 5772 .837 986 384.1 1108 1500 0.10 500 1933 1605 18.87 2
21.173 6587 3841 5761 837 98.7 3598 1067 2000 01J0 500 1935 16.10 1890 2
21.290 6574 3872 5747 836 987 3565 1062 2500 0.10 500 1933 1610 1892 2
21355 6565 3890 5739 836 986 395 1032 3000 0.0 500 1933 16.14 1893 2
21382 6553 3904 5726 836 986 3416 1036 3493 0.10 S00 1936 1613 1895 2
21.387 6546 3910 5720 .836 984 330.1 1016 390.7 0.10 S00 1935 1615 1895 2
21376 6535 39.16 S709 835 98.3 3246 1006 4500 0.10 500 1932 16.17 1894 2
21.358 6528 39.17 5702  .835 98.1 316.4 991 5000 010 500 1933 16.18 1897 2
21.340 6523 39.18 5696  .835 98.0 3116 983 5426 0.10 500 1934 1619 18.96 2

Table 6.23 Optimizations at Fixed Cell Thickness (X}), no bsf, case 3
log log log

eff Voo s Vmp f Cer Tux Lo X X Xo Do Dp DL Opl
13721 6023 2771 5216  .822 87.1 2.7 40 100 2.7 0. 18.14 18.13 0. 2
15,630 6195 3052 5382 .827 87.7 7.1 77 250 1319 0. 1785 17.83 0. 2
17.038 6448 31.71 5630 .833 872 8.0 84 500 1.31 0. 18.54 17.79 0. 2
18437 6575 3348 5758  .838 88.7 13.8 123 1000 0.10 0. 19.29 17.60 0. 2
19.127 6596 34.60 5778 838 899 21.2 168 1500 0.10 0. 1930 17.44 0. 2
19.552 6606 3530 5789  .838 90.7 289 210 2000 0.10 0. 1929 1732 0. 2
19.843 6616 3577 5798  .838 91.2 35.1 241 2500 0.10 0. 19.29 17.24 0. 2
20059 6620 36.13 5801 .839 91.6 42.1 274 3000 0.10 0. 19.29 17.17 0. 2
20,223 6622 3642 5803 .839 91.9 48.8 304 3500 0.10 0. 1930 17.10 0. 2
20.353 662.5 36.63 5806 .839 92.2 534 323 4000 0.10 0. 19.31 17.07 0. 2
20.454 6626 36.81 5806 .839 92.4 58.5 344 4500 0.10 0. 19.29 17.03 0. 2
20.538 662.8 3695 5808 .839 92.6 62.2 3sg§ 5000 O.10 0. 19.29 17.00 0. 2
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Table 6.24 Optimizations at Fixed Front Junction Depth (X§), case 3

log log log

eff Voo Ji Vmp # Cer Twuxk Lda XL X Xy Dgp Dg DL Oy
21371 6569 3890 5743 8% 986 3379 1030 3000 006 500 1948 1614 1893 2
21355 6565 3890 5739 836 986 3395 1032 3000 0.0 500 1933 1614 1893 2
21332 6558 3891 S7T3.2 .83 986 3451 1042 3000 020 500 19.16 1613 1893 2
21316 6554 3891 5728 .83 986 3503 1081 3000 030 S00 1904 1612 1893 2
21.303 6551 3890 5725 836 986 3505 1051 3000 040 500 1898 16.12 1893 2
21.290 6549 3890 5723 .83 986 3522 1054 3000 0S50 S0.0 1890 1611 1892 2
21.262 6543 3888 5718 .83 986 3565 1062 3000 075 500 1878 1610 1892 2
21.235 6540 3836 S714 83 985 3560 1061 3000 100 500 1867 1610 18.93 2
21.183 6532 3882 5706 .835 984 3683 1082 3000 150 500 1852 1608 1892 2
21.131 6526 3877 S700 835 983 3724 1088 3000 200 500 1838 1607 1893 2

Table 6.25 Optimizations at Fixed Back Junction Depth (X3), case 3
log log log

eff Voo Jc Vmp 1 Cer Touxk La X Xf Xp Do Dp Dy Op
20.158 661.0 3637 5792 838 922 49.8 308 3000 0.10 05 1929 17.10 20.60 2
20.228 6603 3654 5785 838 926 55.9 333 3000 0.10 1.0 1930 17.05 20.56 2
20.298 6304 3872 549.1 832 982 4619 1229 3000 0.10 20 1934 1592 2033 2
20.727 640.2 3885 5584 .833 98.5 4153 1158 3000 0.10 5.0 1933 1600 1994 2
20989 6465 3890 5644 834 986 3806 1102 3000 0.10 100 1933 1606 1964 2
21.189 6516 3893 S569.3 835 987 353.7 1057 3000 0.10 200 1933 1611 19.33 2
21.275 6539 3893 S7T14 836 987 345.1 1042 3000 O0.10 300 1933 1613 19.15 2
21325 6554 3892 5729 .83 987 3413 1036 3000 0.10 400 1933 1613 1903 2
21355 6565 3890 5739 836 986 3395 1032 3000 010 500 1933 1614 1893 2
21372 6571 3890 5744 836 986 3457 1043 3000 0.10 600 1933 1612 1883 2
21.385 6577 3888 5750 .83 986 3474 1046 3000 010 700 1933 1612 1875 2
21.394 6583 3886 5755 836 985 3496 1050 3000 0.0 800 1933 1612 1869 2
21,400 6588 3884 5759 .83 985 3549 1059 3000 0.0 900 1933 1611 1864 2
21403 659.2 3881 5764 837 984 3569 1062 3000 0.10 100. 1933 1610 1858 2
21404 659.6 3879 5768 837 983 3581 1064 3000 010 110. 1933 1610 1853 2
21404 659.7 3879 5768 837 983 3638 1074 3000 010 112 1933 1609 1853 2
21.404 6599 3876 5771 837 983 3674 1080 3000 010 120. 1933 1608 1849 2

Table 6.26 Optimizations at Fixed Front Surface Doping Concentration (Dy), case 3
log log log

eff Voo I Vmp M Cer Touxk La XL X Xy Dp D D O,
21.266 6537 3893 5712 .83 987 3545 1058 3000 0.10 500 1843 16.11 1893 2
21309 6550 3892 5724 83 987 3499 1050 3000 0.10 500 1873 16.12 1893 2
21.341 6560 3891 5734 836 986 3415 1036 3000 010 500 1903 1613 1893 2
21355 6565 3890 5739 836 986 3395 1032 3000 010 500 1933 16.14 1893 2
21.331 6557 3891 5731 836 987 3486 1048 3000 0.0 500 1963 1612 1893 2
21.216 6522 3895 5696 .835 9387 3762 1095 3000 0.10 500 1994 16.07 1893 2
20910 6434 3899 5611 833 989 4326 1184 3000 O0.10 500 2024 1597 1892 2
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Table 6.27 Optimizations at Fixed Bulk Doping Concentration (Dp), case 3

log log log
eff Voo Js vmp d Cet Toux La XL Xt Xp Dp D DL Opl
20924 6542 3923 5609 815 994 805.7 1668 3000 0.10 500 1933 1523 1893 2
21.156 6543 39.17 5657 825 993 6743 1514 3000 O.10 500 1935 1553 18.97 2
21.30§ 6548 3908 5703 833 991 S08.1 1296 3000 010 500 1935 15.84 1895 2
21355 6565 3890 ST39 836 986 3395 1032 3000 010 S0.0 1933 16.14 1893 2
21.301 6590 3858 5770 838 978 2029 764 3000 0.10 500 1933 1644 18.90 2
21.127 6624 38.03 5805 .839 964 111.0 $25 3000 0.0 S00 1931 1674 18.87 2
20.808 665.8 3724 5837 839 944 56.8 337 3000 010 500 1929 17.04 18381 2
Table 6.28 Optimizations at Fixed Back Surface Doping Concentration (D), case 3
log log log
eff Voo Jc Vmp Cr wux La XL Xy Xp Dg Dg D opl
20.818 6462 3857 5647 835 978 299.7 961 3000 O0.10 500 1933 1621 18.03 2
21.118 651.4 3878 5694 836 983 3220 1001 3000 0.0 500 1933 1617 1833 2
21,302 6552 3888 5728 836 986 3305 1017 3000 0.0 5S00 1933 1615 18.63 2
21355 6565 3890 5739 836 986 395 1032 3000 O0.10 S00 1933 16.14 1893 2
21.329 6562 3888 5735 .8 986 3474 1046 3000 0.10 500 1933 1612 19.23 2
21.290 6557 3884 S730 836 985 3514 1053 3000 O0.10 500 1934 1611 1954 2
21.255 6552 3881 5726 .83 984 3527 1055 3000 0.10 500 1933 1611 19.84 2
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Efficiency VS. Cell Thickness
Case 3 [t =1 ms, sf = 1,000 cr/s, sb = oo cm/s]
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figure 6.24
Optimal bulk doping for fixed cell thickness (no bsf)
Case 3 [t = 1 ms, sf = 1,000 cmy/s, sb = o cm/s]
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Efficiency vs Front Junction Depth
Case 3 [t = 1 ms, sf = 1,000 cmv/s, sb = o c/s]
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figure 6.26
Optimal front surface doping for fixed front junction depth
Case 3 [t =1 ms, sf = 1,000 cr/s, sb = o= cm/s]
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Efficiency vs Back Junction Depth
Case 3 [t = 1 ms, sf = 1,000 cr/s, sb = ee cm/s]
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figure 6.28
Optimal back surface doping for fixed back junction depth
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Efficiency vs Front Surface Doping
Case 3 [t = 1 ms, sf = 1,000 cavs, sb = e cm/s]

183

na
n3 -"
T nad
i P
e ]
: 1
s 3
c P
Yy 0 -.'
s 3
3
ns 3
140 ) ¥ ) 11’ M ) . ) IJ. ' ’ ) ’ _IJ.’ j . v j J‘ ’ ) 3
log Prom Serfacs Doping
Mo agnifow dfwume
ey fass wnd resgemel
figure 6.30
Efficiency vs Bulk Doping
Case 3 [t = 1 ms, sl = 1,000 co/s, sb = == cm/s]
214
]
213
£ b
[ g
i ]
¢ 3
i 3
e 21 .
o ]
4 p
y 21.0
% b
205 3
208 3
1440 L T J’ Kl I 1 L] 110 1 Ll i i IIS Ll 1 ] 1 |J.o 1 1 s
log Bulk Doping
Uppsr Sound (100 jum) for call duckaees acuve.
figure 6.31
Efficiency vs Back Surface Doping
Case 3 [t = 1 ms, sf = 1,000 cnvs, sb = e cr/s]
2.4 §
3
a3 -':
e
{ 21.2
i -
< b
; 211 -
n 3
: 2103 + variables reoptimized
% p
23 3 - variables fixed
208
uoI ['115"":lo'T“xJ,s"' 0
log Back Surface Doping
figure 6.32




Parameters Held Constant During Optimization (see also table 6.1).

Front surface recombination velocity (S¢) 10,000
Back surface recombination velocity (Sp) 10,000
Electron minority carrier lifetime! () 0.40
Hole minority carrier lifetime! (50) 0.20

Optimal Values of Decision Variables

Front junction depth (Xy) 0.10

Back junction depth (Xp) 50.0

Cell thickness (XL) 300.0

Front surface doping concentration (Dg) 7.228x101°
Bulk doping concentration (Dg) 1.0x1016
Back surface doping concentration (Dy) 5.724x1019

Cell Performance Parameters

Efficiency 20.361
Open circuit voltage (V) 631.16
Short circuit current density (Jg) 38.809
Maximum power voltage (V) 549.55
Fill factor 0.8312
Collection efficiency 98.38
Bulk resitivity 1.391
Sheet resistance layer 1 395.4
layer 2 7.19
Bulk lifetime 165.8
Bulk diffusion length 731

! Values in lightly doped silicon.

Table 6.29 Optimal Solution For Case 4
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Table 6.30 Effect of BSF and BSR, case 4 (S¢ = 10,000 cnv's, Sp = 10,000 cnv's, Tpg = 0.4 ms)

log log log
eff Voo Jio Vmp Ctt wux Ld Xp Xf Xp Do D Dy %
20361 6312 3881 5495 431 984 1658 731 3000 010 500 1936 16.00 18.72 2
19908 6311 3793 5498 832 986 IS15 695 3000 010 500 1985 1606 18.74 1
19.170 634.1 3628 5533 833 920 48 282 3000 010 0. 19.82 16.86 0. 2
18952 6342 3586 S$534 .833 932 333 274 3000 010 O 1984 16838 0. 1
Table 6.31 Optimizations at Fixed Cell Thickness (XL), with bsf, case 4
log log log
eff Voo J¢ Vmp 1 Cegp Toux Ly Xp Xf Xp Do Dy D Oy
16711 6312 3179 S505 833 999 2468 912 100 010 02 19.82 1564 1991 2
18.308 6329 3473 5520 .833 998 2219 860 250 0.0 02 19.85 1576 1991 2
19.071 6338 3613 5528 833 993 200.4 813 500 010 100 1987 1585 19.11 2
19.782 &35.1 3740 5538 .833 99.1 185.5 79 1000 010 223 1987 1591 1892 2
20.108 6348 3805 5534 832 989 1739 751 1500 0.0 299 1990 1596 18.86 2
20.258 6341 3839 5526 .832 986 169.5 740 2000 010 492 19.87 1598 18.66 2
20.332 6325 3865 S509 832 985S 168.8 738 2500 010 498 1986 1599 1868 2
20361 6312 3881 5495 831 984 1658 731 3000 0.0 500 1986 1600 13.72 2
20362 6307 3885 549.1 831 983 1641 727 3191 010 500 19.85 16.01 18.72 2
20.358 6300 38.89 5483 831 982 1629 T24 3500 010 500 19.86 1601 18.74 2
20336 6289 3894 5472 830 980 1608 719 4000 010 500 1987 1602 1875 2
20296 6277 3895 5460 830 978 1595 715 4500 010 500 19.84 1603 1876 2
20.257 6269 3894 5451 830 976 157.4 710 5000 O0.10 S00 19.86 1604 1878 2
Table 6.32 Optimizations at Fixed Cell Thickness (X ), no bsf, case 4
log log log
eff Voo Js Vmp 1 Cer Twouxk La XL Xf Xy Do Dg DL Opl
14.455 6017 2907 525 .826 913 204 196 100 010 0 1976 1711 0. 2
15823 6143 3106 5345 829 893 170 173 250 010 O 1979 1718 0. 2
16908 6252 3252 5449 831 894 142 152 500 010 O 1981 1726 O 2
17958 631.1 3417 5505 .833 905 176 177 1000 010 0 1981 1717 0. 2
18.480 6329 3505 5522 .833 911 23 208 1500 010 O 1982 1707 O 2
18.802 6339 3560 5532 .833 9L 264 234 2000 010 O 1982 1699 0. 2
19.013 6340 3599 5533 833 917 307 260 2500 010 O 1981 1692 O 2
19.170 6341 3628 5533 833 920 3483 282 3000 010 O 1982 168 0. 2
19.287 6340 3651 5532 833 922 387 303 3500 010 0 1982 1681 0. 2
19379 6338 3670 5530 .833 924 424 322 4000 010 0. 1983 1677 O 2
19.444 6333 3686 5525 .833 925 463 340 4500 010 O 1981 1673 0. 2
19.503 6330 3699 5521 .833 927 499 357 5000 010 O 1982 1669 0. 2
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Table 6.33 Optimizations at Fixed Front Junction Depth (Xf), case 4

log log log
eff Voo Jic Vmp 1 Cer Toux L XL Xf Xy Dgp D DL Oy
20.404 6322 38.82 5505 .831 98.4 164.1 727 3000 0.06 500 2000 16.01 1870 2
20361 6312 3881 5495 831 984 1658 731 3000 010 500 1986 1600 1872 2
20.288 629.8 3877 5481 831 983 1707 743 3000 020 SO0 1967 1598 1860 2
20226 629.1 3871 5475 .83 98.1 1716 745 3000 030 500 1955 1597 18.68 2
20.167 6285 3863 5470 .831 979 173.2 749 3000 040 S0.0 1945 1597 18.70 2
20.107 6280 3856 S464 830 97.8 1764 757 3000 050 500 1936 1595 18.71 2
19.956 6269 3835 5453 .830 972 1819 770 3000 075 500 19.19 1593 18.70 2
19.804 6257 38.15 544.1 830 96.7 1886 78 3000 1.00 500 19.02 1590 1871 2
19.513 6229 3780 5412 829 958 1998 812 3000 150 495 1869 15.85 18.69 2
19.249 619.0 3758 5372 .827 953 2160 847 3000 200 S0.0 1835 1578 1868 2
Table 6.34 Optimizations at Fixed Back Junction Depth (X), case 4
log log log
eff Voo Jc Vmp 7 Cer T La XL Xr Xo Do 8 DL Op
20264 628.0 3886 5464 830 985 1718 746 3000 010 02 1986 1597 2007 2
20200 6267 3883 5451 830 984 1753 754 3000 010 05 1986 1596 1976 2
20174 626.1 3882 5446 830 984 1773 759 3000 0.0 1.0 1986 1595 1960 2
20167 626.0 3881 5446 830 984 1758 755 3000 010 20 1986 1596 1944 2
20.198 6267 3882 5453 830 984 1737 750 3000 010 SO0 1986 1597 1929 2
20250 628.0 3883 5464 B30 984 1696 740 3000 010 100 1986 1598 1918 2
20309 6294 3883 5479 831 984 1658 731 3000 O0.10 200 1986 1600 1904 2
20336 6302 3883 5486 831 984 1658 731 3000 0.0 300 1986 1600 1892 2
20.352 6307 3882 549.1 831 984 1658 731 3000 0.10 400 1986 1600 1882 2
20361 6312 3881 5495 831 984 1658 731 3000 0.0 500 1986 16.00 1872 2
20365 6315 3879 5499 831 983 1659 731 3000 010 600 1986 1600 1862 2
20368 6318 3877 5502 831 983 1663 732 3000 010 700 1986 1600 1856 2
20369 6320 3876 5504 831 983 1687 738 3000 0.10 80.0 1986 1599 1849 2
20369 6321 3876 5504 831 983 1700 742 3000 O0.10 843 1986 1598 1845 2
20369 6322 3875 5506 .831 982 1706 743 3000 0.10 900 1985 1598 1840 2
Table 6.35 Optimizations at Fixed Front Surface Doping Concentration (Do), case 4
log log log
eff Voo Jc Vmp # Cer Tk Ld XL Xf X, Dy Dg Dp Op
20.151 6248 3886 5434 830 985 1765 757 3000 010 496 1896 1595 1870 2
20249 6277 3884 5463 830 985 1717 746 3000 010 SO0 1926 1597 18.71 2
20.325 6301 3881 5485 831 984 1658 731 3000 010 SO0 1956 1600 1871 2
20361 6312 3881 5495 831 984 1658 731 3000 0.10 500 1986 1600 1872 2
20.298 6294 3882 5478 831 98.4 1725 747 3000 010 S00 2016 1597 1872 2
20.031 6223 3882 5409 829 984 1837 774 3000 010 494 2046 1592 18.67 2
19.813 6165 3882 5353 828 984 199.2 810 3000 010 S00 2060 1585 18.67 2
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Table 6.36 Optimizations at Fixed Bulk Doping Concentration (Dp), case 4

log log log
eff Voo Jc Vmp Ct wux Lda XL Xy Xy Do Dg Dp Op
19.849 6316 3866 5404 813 993 3401 1086 2017 0.0 500 1990 1510 1865 2
20100 6293 3893 S418 820 992 2958 1007 2546 0.0 500 19.86 1540 18.69 2
20291 6289 3900 5453 877 989 2345 887 2976 010 500 19.88 1570 1869 2
20361 6312 3881 5495 531 984 1658 731 3000 010 500 1986 1600 1872 2
20290 633.6 3845 S525 833 975 1043 S60 3000 010 500 198 1630 1871 2
20065 6360 3784 5551 834 960 597 400 2921 010 500 1984 1660 1870 2
19.670 6381 3695 5572 834 940 319 267 2607 010 S0.0 1982 1690 1866 2
Table 6.37 Optimizations at Fixed Back Surface Doping Concentration (Dy ), case 4
. log log log
eff Voo Jc Vmp 1 Cer Tux Ly XL Xy Xy Dy Dg Dy Oy
20122 6257 3873 S445 830 982 1777 760 3000 0.10 S0.0 1986 1595 17.82 2
20256 6286 3878 5472 831 983 1713 745 3000 0.0 500 1986 1598 1812 2
20337 6305 3881 5489 .831 984 1658 731 3000 010 500 1986 1600 1842 2
20361 6312 3881 S495 831 984 1658 T3 3000 010 500 1986 1600 1872 2
20346 6311 3878 5495 831 983 1658 T3l 3000 010 480 1986 1600 1902 2
20323 6309 3876 5493 831 983 1658 T3l 3000 0.10 448 1986 1600 1932 2
20302 6307 3873 5491 831 982 1658 731 3000 O0.10 439 1986 1600 1963 2
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Efficiency VS. Cell Thickness
Case 4 [T = 0.4 ms, sf = 10,000 cm/s, sb = 10,000 cr/s]
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Efficiency vs Front Junction Depth
Case 4 [T = 0.4 ms, sf = 10,000 cm/s, sb = 10,000 crv/s]
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Optimal front surface doping for fixed front junction depth
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Efficiency vs Back Junction Depth
Case 4 [t = 0.4 ms, sf = 10,000 cm/s, sb = 10,000 cmmv/s]
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Optimal back surface doping for fixed back junction depth
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Efficiency vs Bulk Doping
Case 4 [T = 0.4 ms, sf = 10,000 cm/s, sb = 10,000 cmrv/s]
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Parameters Held Constant During Optimization (see also table 6.1).

Front surface recombination velocity (S¢) 1,000
Back surface recombination velocity (Sp) 1,000
Electron minority carrier lifetime! () 0.1
Hole minority carrier lifetime ! (Tp0) 0.05

Optimal Values of Decision Variables

Front junction depth (X¢) 0.10
Back junction depth (Xy) 0.2

Cell thickness (XL) 100.0

Front surface doping concentration (Dy) 1.863x10!9
Bulk doping concentration (Dg) 2.005x1016
Back surface doping concentration (Dy) 2.139x1019

Cell Performance Parameters

Efficiency 20.022
Open circuit voltage (Vo) 642.9
Short circuit current density (Jg) 37.339
Maximum power voltage (V yp) 561.2
Fill factor 0.8340
Collection efficiency 98.91
Bulk resitivity 0.735
Sheet resistance layer 1 1097.4
layer 2 67.67
Bulk lifetime 26.1
Bulk diffusion length 280

! Values in lightly doped silicon.

Table 6.38 Optimal Solution For Case 5
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Table 6.39 Effect of BSF and BSR, case 5 (S¢ = 1,000 cnvs, Sp, = 1,000 cm/s, Tpg = 0.1 ms)

log log log
eff Voo Ji Vmp 1 Cer Touxk Lu XL Xf Xp Do Dg Dp Oy
20.022 6429 3734 5612 334 98.9 26.1 280 1000 0.10 020 1927 1630 1933 2
19.296 6423 36.02 560.7 834 99.0 24.7 21 1000 010 020 1927 1634 1933 1
19.081 635.5 36.02 554.7 833 954 11.8 172 1000 0.10 O. 19.26 16.72 0. 2
18.502 6359 3491 555.1 .833 95.9 109 163 1000 0.10 O. 19.27 16.76 0. 1

Table 6.40 Optimizations at Fixed Cell Thickness (X ), with bsf, case 5

log log log

eff Voo Jc Vmp M Cer Toux Lu X Xy X Do D Do Op1
17.878 6698 3180 5872 .839 99.9 215 250 100 010 020 1924 1641 1929 2
19.312 6638 3471 5814 838 99.8 20.5 242 250 010 020 1925 1644 1930 2
19.832 6551 3619 5729 83 995 220 253 500 010 020 1927 1640 1931 2
19979 6483 3690 5664 835 99.2 24.1 267 750 010 020 1927 1635 1931 2
20.022 6429 3734 5612 834 989 26.1 280 1000 010 020 1927 1630 1933 2
20.022 6415 3744 5598 834 988 269 285 107.1 010 020 1925 1629 19.33 2
20.013 6384 3763 5567 833 986 28.2 293 1250 010 020 1925 1626 1934 2
19977 6346 37.82 553.1 832 983 29.6 301 1500 010 020 1926 1623 1936 2
19.865 628.6 3803 S473  .831 97.9 32.1 316 2000 0.10 020 1927 16.18 19.39 2
19.594 6207 3808 5396 .829 96.5 349 331 3000 010 020 1926 1612 19.45 2

Table 6.41 Optimizations at Fixed Cell Thickness (X[ ), no bsf, case §
log log log

eff Voo I Vmp 1 Cer Toux La XL Xy Xy Do D DL Opl
17.026 6502 3135 5685 .835 98.5 4.5 89 100 010 O 1924 17.17 0. 2
i8.331 64683 3393 5654 835 97.5 6.4 ii4 250 010 0 19.24 17.01 0. 2
18.827 6420 3514 S609 835 96.6 8.5 138 500 010 O 19.25 16.88 0. 2
18999 6383 3569 5574 834 959 103 157 750 010 O 19.24 16.79 0. 2
19.081 6355 3602 5547 833 954 11.8 172 1000 010 O. 1926 16.72 0. 2
19.119 6336 3622 5528 .833 949 129 182 1250 010 O. 19.24 16.68 0. 2
19.136 6318 3638 551.1 .833 94.6 14.1 192 1500 0.10 O 19.24 16.63 0. 2
19.139 6300 3650 5494 832 94.3 154 203 1727 010 O 19.25 16.59 0. 2
19.135 6285 3659 5479 832 94.0 16.6 213 2000 010 O 19.26 16.55 0. 2
19.086 6249 3675 5443 .83l 93.2 19.6 236 3000 010 O 19.24  16.46 0. 2
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Table 6.42 Optimizations at Fixed Front Junction Depth (Xf), case 5

log log log
eff Voo Jc Vmp 7 Cer Tux Ld XL Xf Xp Do Dg DL Oy
20035 6433 3734 S6L.5 B34 989 26.1 280 1000 006 020 1944 1630 1933 2
20022 6429 3734 5612 834 989 26.1 280 1000 010 020 1927 1630 1933 2
19.999 6424 3734 S606 .834 989 26.1 280 1000 020 020 1904 1630 1933 2
19982 6418 3735 5600 .834 989 21.0 285 1000 030 020 1891 1628 19.33 2
19968 6414 3734 5597 834 989 270 285 1000 040 020 138.82 1628 1933 2
19.954 6411 3735 5593 .833 989 274 288 1000 050 020 1873 1627 1932 2
19.922 6406 3732 5588 .833 989 21.0 286 1000 075 020 1857 1628 1932 2
19.892 6399 3732 5581 .833 989 2719 291 1000 1.00 020 1841 1626 19.26 2
19.835 6389 3729 5571 .833 988 28.5 29 1000 1.50 020 1820 1625 1933 2
19.774 6376 3727 5558 .832 987 30.0 304 1000 200 020 1801 1622 19.07 2
Table 6.43 Optimizations at Fixed Back Junction Depth (Xp), case 5
log log log
eff Voo Je Vmp 1 Cer Toux Lda XL Xy Xp Do Dp DL Op
20060 6440 3734 5622 .8 989 25.1 274 1000 010 0.05 1926 1632 19.87 2
20040 6434 3735 S616 834 989 26.1 280 1000 0.10 0.10 1927 1630 19.56 2
20022 6429 3734 S612 834 989 261 280 1000 0.10 020 1927 1630 1933 2
20010 6427 3733 5609 .83 989 26.1 280 1000 010 030 1927 1630 19.20 2
19.994 6423 3733 S60.5 .83 989 26.4 281 1000 010 050 1928 1630 19.03 2
19980 641.8 3734 S60.1 .834 989 270 285 1000 0.0 075 1927 1628 1891 2
19.969 6415 3734 5598 .834 989 274 288 1000 0.10 1.00 1927 1627 1883 2
19952 6410 3734 5593 834 989 280 291 1000 0.10 150 1927 1626 1869 2
19940 6407 3734 5590 834 989 281 292 1000 0.0 200 1927 1626 1859 2
Table 6.44 Optimizations at Fixed Front Surface Doping Concentration (Dg), case §
log log log
eff Voo Jsc Vmp 1 Cer tux i X Xf Xy Do Dg Dp Op
19968 6412 3736 5595 .83 989 270 286 1000 O0.10 020 1837 1628 1933 2
19995 642.1 3734 5605 .834 989 26.1 280 1000 O0.10 0.20 1867 1630 1933 2
20.014 6427 3734 5610 834 989 26.1 280 1000 O0.10 020 1897 1630 1933 2
20.022 6429 3734 S612 834 989 26.1 280 1000 0.10 020 1927 1630 1933 2
20.009 6426 3734 5609 .834 989 26.1 280 1000 0.10 020 1957 1630 1933 2
19947 6405 3736 5589 834 9.0 27.6 289 1000 010 0.20 19.87 1627 19.33 2
19775 6354 3737 5540 833 990 29.5 301 1000 0.10 020 20.17 1623 19.32 2
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Table 6.45 Optimizations at Fixed Bulk Doping Concentration (D), case 5

log log log
eff Voo Jsc Vmp 7 Cer Toux i XL Xy Xy Do DL Op
19365 6355 3764 5404 810 997 739 503 1000 010 020 1931 1540 1937 2
19715 6368 3760 5496 823 996  S86 443 1000 010 020 1929 1570 1936 2
19941 6398 3751 5566 831 994 414 365 1000 010 020 1928 1600 1935 2
20022 6429 3734 S612 834 989 261 280 1000 0.10 020 1927 1630 1933 2
19.891 6482 3672 5667 .83 98.] 134 186 843 010 020 1925 1666 1931 2
19633 6519 3602 5703 836 975 81 134 656 010 020 1925 1690 1928 2
19071  653.8 3490 ST19 836 967 42 84 437 010 020 1926 1721 1925 2
Table 6.46 Optimizations at Fixed Back Surface Doping Concentration (Dy ), case §
log log log
eff Voo Jc Vmp 1 Cer Toux La XL X Xp Dp Dg D Op
19.965 6414 3733 5597 834 989 273 287 1000 010 020 1927 1628 1843 2
19.993 6421 3734 5604 834 989 269 285 1000 010 020 1927 1629 1873 2
20.013 6428 3734 S61.0 834 989 261 280 1000 010 020 1927 1630 1903 2
20.022 6429 3734 5612 834 989 261 280 1000 010 020 1927 1630 1933 2
20008 6426 3733 S609 .83 989 261 280 1000 0.10 020 1927 1630 1963 2
19944 6408 3734 5591 833 989 282 293 1000 010 020 1927 1626 1993 2
19.768 6361 3732 5546 833 989 316 313 1000 010 020 1927 1619 2023 2
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Efficiency VS. Cell Thickness
Case 5 [t = 0.1 ms, sf = 1,000 cmv/s, sb = 1,000 cm/s]
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Efficiency vs Front Junction Depth
Case 5 [t = 0.1 ms, sf = 1,000 cm/s, sb = 1,000 cm/s]
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Efficiency vs Back Junction Depth
Case 5 [t = 0.1 ms, sf = 1,000 cnv/s, sb = 1,000 cnvs]
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figure 6.47
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Optimal back surface doping for fixed back junction depth
Case 5 [t =0.1 ms, sf = 1,000 cm/s, sb = 1,000 crm/s]

s ——m—r—————

00 0.5 1.0 1.5
Back Junction Depth pm

DI = back surface doping concenrauon

figure 6.48
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Efficiency vs Front Surface Doping |
Case 5 [t = 0.1 ms, sf = 1,000 crys, sb = 1,000 cm/s]
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Efficiency vs Back Surface Doping

Case S [t =0.1 ms, sf = 1,000 cm/s, sb = 1,000 crvs]
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Efficiency vs Bulk Doping
Case 5 [t = 0.1 ms, sf = 1,000 cnv/s, sb = 1,000 cm/s]
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figure 6.51
Optimal cell thickness for fixed bulk doping
Case 5 [t = 0.1 ms, sf = 1,000 cmy/s, sb = 1,000 cm/s]
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Parameters Held Constant During Optimization (see also table 6.1).

Front surface recombination velocity (S¢) 1,000

Back surface recombination velocity (Sy) oo
Electron minority carrier lifetime (Tq0) 0.1
Hole minority carrier lifetime ! (150 0.05

Optimal Values of Decision Variables

Front junction depth (Xy) 0.10

Back junction depth (X,) 24.17

Cell thickness (XL) 100.0

Front surface doping concentration (D) 1.932x1019
Bulk doping concentration (Dg) 1.236x1016
Back surface doping concentration (D) 1.031x1019

Cell Performance Parameters

Efficiency 19.481
Open circuit voltage (Vo) 631.2
Short circuit current density (Jg) 37.05
Maximum power voltage (V) 550.74
Fill factor 0.832
Collection efficiency 98.14
Bulk resitivity 1.143
Sheet resistance layer 1 1100.9
layer 2 10.61
Bulk lifetime 36.5
Bulk diffusion length 340

'Values in lightly doped silicon.

Table 6.47 Optimal Solution For Case 6
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Table 6.48 Effect of BSF and BSR, case 6 (S¢ = 1,000 cmy's, Sy, = o2 civ's, Tpg = 0.1 ms)
log log log
eff Voo Js Vmp f Cer Toux Ld Xp Xe Xp Dg Dg Dp Opl
19481 6320 3705 5507 832 981 365 340 1000 010 242 1929 1609 1901 2
18.847 6317 3585 5506 .8312 985 337 324 1000 010 242 1928 1615 1905 1
17.553 6335 3328 5527 .833 88.1 5.1 97 1000 0.10 0. 1927 1712 0. 2
17.254 6336 3271 S528 .833 899 49 94 1000 010 O 1926 1714 O 1
Table 6.49 Optimizations at Fixed Cell Thickness (X} ), with bsf, case 6
. log log log
eff Voo Jo Vmp 7 Cer Tux La Xp Xy Xp Dg Dg DL Op
16039 6214 3107 5411  .831 97.6 56.7 435 100 Q10 25 1922 1573 20.07 2
18.008 6332 3415 $S22 .833 981 434 375 250 010 67 1924 1597 1962 2
18942 6353 3580 SS41 833 984 384 350 500 010 128 1927 1606 1932 2
19304 6339 3658 SS27 832 983 368 342 750 010 184 1926 1609 1915 2
19481 6320 3705 5507 832 981 365 340 1000 0.0 242 1929 1609 1901 2
19.568 6298 3737 S486 831 979 3701 343 1250 0.10 310 1925 1608 1889 2
19607 6273 3762 S462 831 978 372 344 1500 010 298 1926 1608 1893 2
19613 6257 3774 S446 830 977 376 346 1669 010 308 1925 1607 1893 2
19602 6237 3786 5427 830 973 374 345 2000 Q.10 394 1927 1607 1879 2
Table 6.50 Optimizations at Fixed Cell Thickness (X[), no bsf, case 6
log log log
eff Voo Jsc Vmp M Cer Toux La XL Xf X, Dg Dg DL Op
13.019 5726 2792 4930 814 877 22 52 100 305 O 1764 1749 0. 2
14895 5915 3075 5109 .819 884 40 82 250 35 0 1731 1722 0. 2
16256 6308 31.00 5499 .331 85.2 27 60 500 010 0. 19.29 17.41 0. 2
17064 6327 3241 5518 832 §7.1 39 8 750 010 O 1927 1724 O 2
17553 6335 3328 527 .833  88.1 s1 97 1000 010 O 1927 1712 O 2
17.878 6342 3385 5534 .833 887 59 108 1250 010 O 1926 1705 O 2
18107 6344 3427 5535 833 89.1 68 119 1500 010 0 1926 1698 0. 2
18402 6339 3485 5531 .833 89S 84 137 2000 010 O 1926 1689 0. 2
18574 6327 3526 S519 833 899 100 154 2500 O.10 O 1925 1680 O. 2
18684 6314 3555 5507 .82 90. 114 168 3000 010 O 1925 1674 O. 2
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Table 6.51 Optimizations at Fixed Front Junction Depth (Xf), case 6

log log log
19.489 6322 3705 5510 .832 981 365 340 1000 006 243 1944 16.09 19.01 2
19.481 6320 3705 5507 832 981 365 340 1000 0.10 242 1929 1609 1901 2
19.467 6315 3706 5503 .832 982 37.1 343 1000 020 243 1905 16.08 19.00 2
19.455 631.1 37.06 5499 832 98.2 373 344 1000 030 241 1891 1608 19.00 2
19.445 6309 37.06 549.7 .832 982 374 345 1000 040 241 1880 1607 19.01 2
19.436 6307 3705 5495 832 982 375 345 1000 0S50 242 1869 1607 19.00 2
19.413 6303 3704 5491 832 98.1 372 344 1000 075 240 1851 1608 19.00 2
19.392 629.7 37.04 5485 831 981 383 349 1000 1.00 236 1836 1606 19.01 2
19.350 6289 37.02 5477 831 98.1 384 350 1000 150 223 1812 16.06 19.05 2
19309 6283 3699 5470 .831 980 388 352 1000 200 226 1794 1605 19.04 2

Table 6.52 Optimizations at Fixed Back Junction Depth (X}), case 6
log log log
eff Voo Js vmp f Cer ux La XL Xy Xy Dp D D Opl
17597 6332 3339 5524 833 884 53 100 1000 010 00 1927 1710 2060 2
17.645 6329 3349 5521 832 887 56 104 1000 0.10 0.1 1927 17.08 20.60 2
18318 6015 3685 520 826 976 484 398 1000 010 05 1927 1588 2060 2
18732 6084 3723 5280 827 986  S53 429 1000 010 1.0 1927 1576 2060 2
19.023 6175 3715 5370 .829 984 434 375 1000 010 20 1925 1597 203! 2
19.302 625.0 37.17 5442 831 985 383 349 1000 oO.10 50 1928 1606 19.38 2
19.427 6288 37.16 5478 .831 984 365 340 1000 010 100 1927 1609 1954 2
19.478  631.3 3709 550.1 832 98.2 365 340 1000 010 200 1929 1609 19.13 2
19481 6320 3705 5507 832 98.1 365 340 1000 010 242 1929 1609 19.01 2
19.477 6326 3700 5513 832 98.0 372 344 1000 010 300 1929 1608 1887 2
19460 6335 3691 552.1 832 978 390 353 1000 010 400 1929 1605 1869 2
19.435 6342 3682 5528 .82 975 41:6, 366 1000 010 500 1929 1600 1853 2
Table 6.53 Optimizations at Fixed Front Surface Doping Concentration (Dy), case 6

log log log
eff Voo Jc Vmp 1 Cer Tk Ly XL Xy Xy Dy Dg D Oy
19.447 6307 3707 5496 832 982 375 345 1000 010 242 1838 1607 19.01 2
19.464 6314 3705 5502 .832 982 36.5 340 1000 0.0 240 1868 1609 19.01 2
19.476 6318 3705 5506 .832 98.1 36.5 340 1000 0.10 24:1 1898 16.09 19.01 2
19.481 6320 3705 5507 832 98.1 365 340 1000 010 242 1929 16.09 19.01 2
19.472 6317 37.05 5505 .832 98.1 365 340 1000 010 241 1959 1609 19.0! 2
19.429 6302 3707 5490 832 982 381 348 1000 010 241 1989 1606 1900 2
19306 6263 37.09 5454 831 98.3 39.7 357 1000 010 227 2019 1603 19.04 2
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Table 6.54 Optimizations at Fixed Bulk Doping Concentration (Dp), case 6

log log log
eff Voo J¢ Vmp Cet Tux Li XL Xt Xy Do Dg D Opl
19.073 6298 37.15 5396 815 984 82.1 5§33 1000 0.10 500 1931 1519 1854 2
19.287 6308 3707 S455 825 982 69.7 487 1000 010 500 1930 1549 1854 2
19.423 6302 37.17 5476 829 984 $35 421 1000 010 312 1929 1579 18386 2
19.481 6320 3705 5507 832 98.1 365 340 1000 010 242 1929 1609 1901 2
19.412 6346 3671 5537 833 973 223 255 1000 010 223 1926 1639 1904 2
19.176 6376 3607 5567 .83 955 12.5 178 1000 010 223 1926 1669 19.03 2
18.728 6405 3505 5594 .83 929 6.7 117 1000 0.10 194 1926 1699 19.08 2
Table 6.55 Optimizations at Fixed Back Surface Doping Concentration (Dy), case 6
log log log
eff Voo Jo Vmp o Cer Toux Lu XL X¢ Xo Do Dg DL Oy
19327 6307 3683 5497 832 976 410 363 1000 0.0 500 1927 1601 1811 2
19.430 6331 3688 SS1.8 .82 977 401 359 1000 0.10 462 1927 1602 1841 2
19.469 6325 3699 5513 .832 98.0 380 348 1000 010 332 1929 1606 18.71 2
19.481 6320 3705 5507 832 981 365 340 1000 010 242 1929 1609 19.01 2
19.476 6314 3707 5503 .832 982 359 337 1000 010 188 1927 1610 19.31 2
19.451 6307 37.08 S496 .832 982 362 338 1000 0.10 161 1927 1610 1962 2
19.421 6303 3704 5492 832 98.] 364 339 1000 010 158 1927 1609 1992 2
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Efficiency VS. Cell Thickness
Case 6 [T = 0.1 ms, sf = 1,000 cm/s, sb = e cm/s]
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figure 6.53
Optimal bulk doping for fixed ceil thickness
Case 6 [t = 0.1 ms, sf = 1,000 cm/s, sb = e cm/s]
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Efficiency vs Front Junction Depth
Case 6 [t = 0.1 ms, sf = 1,000 crvs, sb = oo cm/s]
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figure 6.55
Optimal front surface doping for fixed front junction depth
Case 6 [t = 0.1 ms, sf = 1,000 cms, sb = e cm/s}
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Efficiency vs Back Junction Depth
Case 6 [T =0.1 ms, sf = 1,000 cm/s, sb = == cm/s]
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figure 6.57
Optimal back surface doping for fixed back junction depth
Case 6 [t =0.1 ms, sf= 1,000 crm/s, sb = o= crm/s]
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Efficiency vs Fromt Surface Doping
Case 6 [t = 0.1 ms, 5f = 1,000 c/s, sb = = cm/s]
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Efficiency vs Bulk Doping
Case 6 [t = 0.1 ms, sf = 1,000 cov's, sb = e crrvs)
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Efficiency vs Back Surface Doping
Case 6 [t = 0.1 ms, sf = 1,000 civs, sb = == cm/s]
19.5
I N
E ]
{ 3
i 193 3 : * variables reoptimized
°. . B
¢ p
g 19.2 :
y p °
% : ,
19.1 =~ ~ variables fixed
19.0 =
o ] rllsl | 'xo—' | | llisl 1 | 0
log Back Surface Doping
figure 6.61




ORIGINAL PAGE IS
OF POOR QUALITY

Table 6.56 Effect of Lifetime, X;, < 300 um, Op; = 2

g log log
el Voo Ju Vmp T G wax L X X Xy Do Dp DL 1
17292 6137 3504 5332 .827 985 29 93 341 .10 02 1808 1625 17.06 0.01
18.557 627.4 3561 5463 .831 9838 52 125 424 .10 02 18.08 1630 17.06 0.02
19.546 6448 3635 5629 .834 991 112 181 580 .10 02 1807 1639 17.10 0.05
20283 657.3 3690 574.8 836 992 206 243 746 .10 02 18.13 1644 1724 0.10
21011 670.1 340 5868 .838 994 381 328 944 .10 02 1805 1648 17.25 020
21.729 6837 37.82 599.5 .840 995 697 440 1152 .10 02 1799 1652 1731 040
22297 95.4 38.09 6104 842 996 1146 S60 1312 .10 02 17.86 1655 17.34 0.70
22653 703.0 3827 6170 .842 997 1674 679 1426 .10 02 17.79 1654 1779 1.00
23440 T776.1 3637 6862 .830 1000 1972.2 2631 497 .10 02 17.81 1400 17.82 2.00
24576 769.4 31.65 689.5 .848 100.0 49305 4161 948 .10 02 17.83 1400 1793 5.00
25258 764.2 3841 639.6 .860 1000 9861.0 S885 145.1 .10 02 17.83 14.00 17.95 10.00

»3
3

OCOo0oo0oOO0DoOoOO0ODO0ODO0OOOC0CO
(==l NeN-N-N-Ne

17773 6124 3508 S532.0 .827 985 29 94 351 .10 02 1825 1624 18.02 0.1
18.531 6259 3566 5449 .830 988 54 127 434 .10 02 1835 1628 1814 0.02
19.497 637.7 36.71 5562 .833 9838 124 191 738 .10 02 1854 1633 1842 0.5
20228 6534 37.04 S571.1 .836 99.1 217 250 818 .10 02 1862 1641 1859 0.10
20934 664.8 3759 S81.9 .838 993 41.0 343 107.0 .10 02 1870 1644 1873 020
21614 6765 38.07 5928 .839 994 T4 469 1358 .10 02 1875 1647 18.82 040
22.130 6829 3858 598.7 .840 994 1348 619 1858 .10 02 1879 1647 1888 070
22.447 687.7 38.85 6026 .840 995 2133 788 2174 .10 02 1874 1641 1884 1.00
23.025 701.2 3898 6156 .842 9.7 3662 1017 2309 .10 02 1879 1648 1893 2.00
23675 T713.0 3936 6266 .344 998 989.1 1692 3000 .10 0.2 1881 1642 1897 S5.00
24050 721.9 3940 6355 .846 999 2261.2 2600 3000 .10 0.2 1881 1633 1898 10.00

NN NNDNMNNDNDNDNODN
(SIS SIS S S S S S S S

17691 6079 3521 527.8 .827 984 32 9% 379 .10 02 1877 1618 1871 0.1
18422 619.2 3588 5386 .829 986 59 14 504 .10 02 1900 1623 1899 0.02
19330 627.0 37.10 5460 .831 983 149 213 991 .10 02 1920 16.22 1924 0.05
20022 641.6 3743 5599 .834 988 267 284 1069 .10 02 1925 1629 1932 0.10
20.650 649.8 38.06 567.6 .835 989 522 3% 1514 .10 02 1930 1630 1939 0.20
21224 658.7 3852 5759 .836 991 1033 557 1950 i 02 1933 1631 1944 040
21633 6652 38.83 S82.1 .837 992 180.1 735 2350 .10 02 1933 1631 1948 0.70
21870 6674 39.12 584.0 .838 992 2641 893 300.0 .10 02 1934 1629 19.52 1.00
22252 675.8 39.24 592.1 .839 995 542.8 1284 300.0 .10 02 1934 1627 1952 2.00
22561 682.5 3932 5987 .841 997 14939 2151 300.0 .10 02 1933 1620 19.52 5.00
22690 6852 3936 601.4 .841 998 33599 3258 300.0 .10 02 1934 1611 19.53 10.00

W W W W W LW W W
WL W LWL W W W W W

17.346 586.5 3597 5073 .822 965 58 140 785 .10 S50.0 1959 1570 17.47 0.01
17.993 5969 36.55 5173 .825 96.8 102 183 999 .10 500 19.72 1584 17.76 0.02
18.812 6089 3735 5287 .827 973 26 271 1430 .10 500 1979 1593 18.14 0.5
19395 617.0 3793 5363 .829 976 434 375 189.8 .10 S0.0 19.83 1597 1840 0.10
19915 6244 3843 5432 .830 98.0 842 521 2462 .10 500 19.85 1599 1859 0.20
20361 631.2 3881 549.5 .831 984 1654 730 3000 .10 500 19.85 16.00 1871 0.40
20626 6363 3895 5544 .832 987 296.1 978 3000 .10 S0.0 19.87 1598 1877 0.70
20751 6387 39.01 556.8 .833 989 4293 1179 3000 .10 50.0 19.87 1597 1877 1.00
20915 6419 39.10 559.8 .833 99.1 9104 1724 3000 .10 500 19.87 1592 1879 2.00
21.028 6440 39.16 5619 .834 993 24464 2839 300.0 .10 S0.0 19.86 1586 18.82 5.00
21069 6448 39.18 5627 .834 993 50069 4070 3000 .10 S0.0 19.87 15.83 18.82 10.00

S A B DL O LB LELESL
S A A B H LB L SELDL

16913 5745 3593 4959 .819 95.5 60 142 922 .10 50.0 2023 15.67 17.81 0.01
17489 581.7 36.61 502.6 .821 96.] 1.1 192 1217 .10 499 2030 1575 18.04 0.02
18.184 589.7 37.48 510.1 .823 967 270 299 1775 .10 499 2035 1578 1835 005 S S

W W
WA W
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g log g log log
f Voo Ju Vmp 1 Cor Hux L& XL X Xo Do D DL g St S
18628 594.6 3804 5146 823 972 6 42 2827 .10 498 2036 1579 1854 010 S5 S
19006 599.1 3850 5185 .824 976 1042 587 3000 .10 466 2038 1581 1878 020 S5 S
19268 603.4 3871 S26 .825 98.1 2050 823 3000 .10 467 2040 1583 1882 040 5 S
19397 605.4 38.82 5245 .25 984 3695 1107 3000 .10 500 2040 1580 1882 070 S5 S
19453 606.3 38.86 5254 .825 985 5283 1324 3000 .10 492 2039 1580 1883 1.00 5 S
19521 607.4 3892 5264 .826 987 10544 1871 3000 .10 436 2039 1580 1892 200 5 S
19564 608.1 3895 527.1 .826 98.3 2619.7 2949 3000 .10 43.6 2039 1530 1893 500 S5 5
19578 608.4 3897 5273 .826 98.8 52823 4191 3000 .10 43.6 2039 1578 1893 1000 S5 5
16363 562.1 3565 484.1 817 943 65 148 1016 .10 496 2060 1559 1784 001 6 6
16.857 $67.3 3634 4339 818 949 124 204 1363 .10 500 2060 1564 1804 002 6 6
17417 5724 37.16 4934 818 955 302 318 200.7 .10 49.6 2050 1567 1833 005 6 6
17.801 579.1 3751 4994 819 954 585 442 2683 .12 495 2060 1570 1855 0.10 6 6
18.102 584.8 37.73 5047 .820 956 1127 613 3000 .14 461 2060 1574 1873 020 6 6
18298 589.1 37.81 5088 .821 959 2225 861 3000 .16 461 2060 1575 1878 040 6 6
18394 591.7 37.81 5113 822 959 3823 1128 3000 .17 495 2060 1577 1881 070 6 6
18436 $93.0 37.81 5125 .822 959 5449 1347 3000 .18 451 2060 1577 18.87 100 6 6
18486 593.9 37.84 Si34 823 959 10696 1885 3000 .18 458 2060 1579 1888 200 6 6
18.518 594.5 37.86 5140 .823 960 26406 2962 3000 .18 450 2060 1579 1889 500 6 6
18528 594.9 37.85 5144 823 959 S5160.7 4138 3000 .18 458 2060 15.80 18.89 1000 6 6
16.160 559.4 3541 4814 816 937 66 149 1025 .11 500 2060 1557 17.80 001 7 7
16642 5656 3600 4872 8317 939 126 206 1392 .12 500 2060 1562 1803 002 7 7
17226 575.1 3657 4960 819 940 298 316 1994 1S S0.0 2060 1568 1833 005 7 7
17599 $581.0 3694 S01.3 .820 94.1 578 440 2573 .17 S0.0 2060 1571 1854 010 7 7
17907 586.5 37.19 5064 821 943 1125 613 3000 .19 500 2060 1574 1869 020 7 7
18.109 591.0 37.28 5107 822 945 2213 859 3000 21 496 2060 1576 1877 040 7 7
18.208 5934 3730 5130 823 946 3811 1126 300.0 22 49.6 2060 1577 1881 070 7 7
18.252 594.4 3732 5139 .823 946 539.4 1339 3000 .22 45.1 2060 1578 1888 100 7 7
18302 $95.5 37.34 5150 823 94.6 1070.7 1887 3000 23 499 2060 1579 1884 200 7 7
18334 5964 3733 5159 .823 946 26409 2962 3000 .23 499 2060 1579 188 500 7 7
18345 5967 37.34 5162 .823 94.6 5208.1 4159 3000 23 499 2060 1580 1885 1000 7 7
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Table 6.57 Examples of Local Maximums, Xi. < 300 pm, Op; = 2

g log  log log log
efl Vo Jue Vw fr Cenr Touik Le Xy, Xy Xe Do Dp Dy, ™o St S
25.258 764.2 3841 6896 .860 1000 9861.0 58385 145.1 .10 02 17.83 1400 1795 1000 0 O
24.576 769.4 37.65 689.5 .848 100.0 49305 4161 948 .10 02 17.33 1400 1793 500 0 O
24.178 739.6 3875 6493 844 999 8995 1599 1823 .10 02 17.79 1647 1773 500 0 O
23440 7761 3637 6862 .830 100.0 19722 2631 497 .10 02 17.81 1400 1782 200 0 O
23328 7184 3851 6309 .843 998 3175 932 1611 .10 02 17.82 1655 1769 200 0 O
22440 7769 3554 6759 .813 1000 98.1 1861 340 .10 02 17.75 1400 1778 1.00 0 0
22.653 7030 3827 6170 842 997 1674 679 1426 .10 02 17.79 1654 1779 1.00 0 O
20996 7650 35.00 6466 .784 1000 3944 1177 2701 .00 02 1776 1400 1776 040 0 O
21729 6837 37.82 5995 .40 995 697 440 1152 .10 02 1799 1652 1731 040 0 O
23978 7289 3944 6416 .834 1000 9861.0 SBBS 2993 .10 0.2 1889 1400 19.13 1000 2 2
24050 7219 39.40 6355 .846 999 2261.2 2600 3000 .10 02 1881 1633 1898 10.00 2 2
23459 7286 3894 6380 .827 100.0 49305 4161 203.6 .10 02 1892 1400 1905 S.00 2 2
23675 T713.0 3936 6266 .844 998 989.1 1692 3000 .10 02 1881 1642 1897 500 2 2
22.567 726.1 38.15 630.2 .815 1000 19722 2631 1247 .10 0.2 18.89 1400 1897 200 2 2
23025 701.2 3898 6156 .842 997 3662 1017 2309 .10 02 1879 1648 1893 200 2 2
22474 6875 39.44 6007 .829 1000 9861.0 5885 3000 .10 02 1941 1400 1965 1000 3 3
22690 6852 3936 6014 .841 99.8 33599 3258 3000 .10 02 1934 1611 1953 1000 3 3
22190 6859 13942 5967 .821 1000 4930.5 4161 2950 .10 02 19.42 1400 1964 500 3 3
22.561 6825 3932 5987 .841 997 14939 2151 3000 .10 02 1933 1620 1952 500 3 3
21600 683.0 3887 5916 .814 1000 1972.2 2631 1938 .10 02 1942 1400 1956 200 3 3
22252 6758 3924 5921 .839 995 5428 1284 3000 .10 02 1934 1627 1952 200 3 3
21.006 680.1 3826 5866 .807 1000 9851 1859 132.8 .10 02 1940 1403 1952 1.00 3 3
21.870 667.4 39.12 S840 838 992 264.1 893 3000 .10 02 1934 1629 1952 1.00 3 3
21224 6587 38.52 5760 .836 99.1 1027 555 1952 .10 02 1933 1631 1944 040 3 3
Table 6.58 No BSF for cases with local maximums, Xy < 300 um, O = 2

log log log log log
eff Voo Ju Vmp fI Cr taw L X X X» Dg Dg DL 1w S S
23315 T17.1 3854 630 .844 998 3033 907 1646 .10 O 17.81 1658 O. 200 0 O
24.144 7357 38.82 647 845 999 7848 1474 1928 .10 0. 1782 1653 0. 500 0 O
24712 7459 39.01 6589 .849 999 1698.0 2200 2161 .10 O 17.81 1646 0. 1000 0 O
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Table 6.59 Effect of Sy and Sy at Tgo = 2.0 ms, X < S00 um, Op=2

log log log log log
eff Ve T Vap A G W L XL X Xy Do Ds DL S S
23328 7196 3844 6320 .843 998 3175 932 1541 010 02 1782 1655 1784 0 0.
23301 7168 3855 6295 .843 998 3238 944 1661 010 02 1798 1654 1837 0 1.0
23.159 7079 3881 6217 .843 99.7 3466 984 2022 010 02 1803 1651 1891 0 20
22644 6869 3922 6024 .340 994 4640 1171 3081 010 02 1796 1636 1951 0 3.0
21962 6673 3927 5842 .838 984 559.7 1307 4848 0.0 S0.0 1793 1625 1885 0 4.0
21945 6669 3927 5838 .838 98.4 5560 1302 S00.0 0.10 500 1826 1625 1895 0 5.0
21944 6669 39.27 5838 .838 984 5545 1300 5000 0.0 500 18.18 1626 1896 0 6.0
23301 7163 3859 6290 .843 99.8 3272 950 1695 0.10 02 1831 1654 1793 1 0.
23207 7122 3830 6233 .840 99.8 449.1 1149 1942 010 02 1828 1638 195 1 1.0
23140 7072 3883 6210 .843 99.7 3573 1003 2044 010 02 1832 1649 1891 1 2.0
22635 6863 3925 6017 .840 993 467.2 1176 3180 0.10 02 1830 1635 1956 1 3.0
21954 6671 3927 5840 .838 98.4 5463 1289 497.7 0.10 SO0 1880 1627 1885 1 40
21941 6668 3927 5837 .838 98.4 5564 1303 5000 0.10 SO0 1826 1625 1895 1 5.0
21940 6668 3926 5837 .838 98.4 5523 1297 499.4 0.10 SO0 1843 1626 1898 1 6.0
23.153 7073 3884 621.1 .843 997 3480 986 2035 010 02 1881 1651 1792 2 0.
23.134 7065 38.85 6205 .843 997 3451 981 2050 010 02 1879 1651 1838 2 1.0
23.025 701.2 3898 6156 .842 99.6 3662 1017 2309 0.0 02 1879 1648 1890 2 20
22578 6845 3925 6002 .840 99.3 4692 1179 3193 010 02 1881 1635 1954 2 3.0
21929 6660 39.30 5829 .838 98.5 S§75.1 1328 4959 0.0 SO0 18.81 1623 1884 2 4.0
21913 6659 39.27 5829 .838 98.4 561.4 1309 S00.0 0.10 500 1880 1625 1895 2 5.0
21911 6657 39.29 5827 .838 98.4 5726 1325 5000 010 500 1881 1624 1896 2 60
22605 6840 3933 5998 .840 99.6 4377 1132 3111 010 02 1932 1639 1824 3 0.
22561 6860 39.09 602.1 .841 99.7 3984 1070 2496 010 02 1933 1644 1913 3 1.0
22545 6826 3931 5985 .840 99.6 4444 1142 3096 0.10 02 1932 1638 1897 3 20
22272 6739 3942 5900 .838 994 S57.8 1305 3719 010 02 1938 1625 1950 3 3.0
21.755 6604 3937 5715 .837 98.6 6432 1416 5000 0.10 SO0 1934 1617 1884 3 40
21740 6601 3937 5772 .837 98.6 6550 1431 5000 0.10 S0.0 1934 1616 1895 3 5.0
21739 6602 3936 5772 837 98.6 649.4 1424 5000 0.10 S0.0 1933 1616 1896 3 6.0
21.475 6492 39.66 5664 .834 99.4 5964 1356 SO0.0 0.00 02 1994 1621 1805 4 0.
21473 6492 39.66 5664 .834 994 5998 1360 S00.0 0.10 02 1995 1621 1885 4 10
21457 6489 3965 5661 .834 99.4 6108 1375 4980 010 02 1994 1620 1895 4 2.0
21377 6472 39.63 5644 .833 993 679.1 1461 5000 0.10 02 1995 1613 1998 4 3.0
21042 6401 39.52 5574 832 99.0 8898 1702 5000 0.10 SO0 1978 1594 1878 4 4.0
21.040 6403 3948 557.8 .832 989 8515 1661 4999 0.10 SO0 19.86 1598 1897 4 5.0
21.039 6404 3947 5579 .832 989 839.] 1647 4999 0.10 SO0 19.86 1599 1896 4 6.0
19930 6110 3949 5296 .826 989 7015 1438 5000 0.10 02 2047 1611 1809 5 O.
19929 611.0 39.48 5296 .826 98.9 6877 1472 S00.0 010 02 2047 1612 1897 S5 1.0
19923 6109 39.49 5294 .826 989 7222 1513 5000 0.10 02 2047 1609 1935 S 20
19.883 6104 3946 5288 .825 989 7889 1591 S00.0 0.10 02 2048 1603 1956 S 3.0
19.688 6073 3933 5255 .824 98.5 9627 1779 5000 0.10 500 2040 1588 1880 5 4.0
19679 607.0 3933 5253 824 985 9658 1782 5000 0.10 SO0 2034 1588 1892 S 50
19.680 607.1 3933 5252 .824 98.5 9926 1809 5000 0.10 500 2039 1585 1891 S 6.0
18.807 5963 3833 5156 .823 960 7094 1498 5000 018 02 2060 1610 1895 6 0.
18.806 596.1 3834 5154 .823 960 711.4 1500 SO0.0 0.18 02 2060 16.10 1896 6 1.0
18.801 5962 3832 5155 .823 960 7183 1509 S00.0 0.8 02 2060 1610 1922 6 20
18766  595.7 3831 5147 822 960 804.9 1609 5000 018 02 2060 1602 1968 6 3.0
18.659 5940 38.25 5127 .821 95.8 980.9 1797 5000 0.18 500 2060 1586 1880 6 4.0
18653 5940 3824 5127 821 958 9743 1790 5000 O0.18 500 2060 1587 1891 6 5.0
18.652 5940 3824 5127 821 958 9799 1796 5000 Q.18 500 2060 1586 1893 6 6.0
18.629 598.0 37.83 5173 823 948 7002 1487 5000 023 02 2060 1611 1815 7 oO.
18628 598.0 37.83 5172 .823 94.8 704.1 1492 S000 023 02 2060 1611 1877 7 1.0
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log log log log log
eff Ve Ju Vop I Ga tax L X X X Do Dy DL St S
1862 $979 37833 5171 .823 948 7187 1509 5000 023 02 2060 1609 1905 7 2.0
18545 S$98.1 37.61 5181 .824 942 5125 1242 5000 023 02 2060 1630 1950 7 3.0
18478 5958 3775 5148 822 946 9882 1805 5000 023 S00 2060 1586 1879 7 40
18472 $95.7 3774 5144 K2 945 9869 18303 S00.0 023 500 2060 1586 1891 7 SO
18471 5957 3774 5143 822 946 9882 1805 S00.0 023 S00 2060 1586 1892 7 6.0
18610 $98.2 13778 5175 .823 947 701.7 1489 5000 024 02 2060 1611 1790 8 O.
18609 5982 37.78 5175 .823 946 7039 1491 5000 024 02 2060 16.11 1877 8 1.0
18.603 S98.1 37.78 5173 823 946 7187 1509 5000 024 02 2060 1609 1913 8 20
18568 S97.7 3776 5166 .823 946 8028 1607 S00.0 024 02 2060 1602 1968 8 3.0
18459 5959 3770 S14.5 .822 945 9895 1806 S000 023 S00 2060 158 1879 8 4.0
18453 5959 37.69 5145 .822 944 9881 1805 S000 023 SO0 2060 1586 1891 8 50
18.452 S959 13769 S14S .322 944 9878 1804 S00.0 0.3 500 2060 1586 1892 8 6.0
Table 6.60 Effect of Sgand Sy, at Ta0 = 2.0 ms, X <300 um, Op; = 2
log log log log log
eff Ve Ju Vop T G Tem L X X X Do Dy Do S S
18.488 5959 37.83 513.7 .820 94.2 9214 1736 7406 023 73.1 2060 1591 1876 o e
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Table 6.61 Effect of S¢and S, at Ty0 = 2.0 ms, X <300 um, Op = 2

log tog log  log log
eflf Ve Jue Vop I Cr Toux L X X X Do Dy DL S S
23328 7184 3851 6309 .843 99.8 3175 932 1611 010 02 17.82 1655 1769 O O.
23302 7167 3856 6294 843 99.8 3238 944 1671 010 02 1781 1654 1832 0 1.0
23.159 708.0 3881 621.8 .843 997 3466 984 2015 0.0 02 17.82 1651 1892 O 20
22.643 6873 3920 6027 .841 994 4640 1171 3000 010 02 1781 1636 1951 0O 3.0
21.872 669.2 3898 5861 .839 98.8 6273 1396 3000 0.10 S00 17.81 1618 1883 0 4.0
21.847 668.8 3896 5858 .338 988 627.1 1396 3000 0.10 S0.0 17.80 1618 1894 O S.0
23301 7163 3859 6290 .843 998 3272 950 1695 0.10 02 1828 1654 1770 1 0.
23272 7121 3877 6253 .843 997 3344 963 1942 010 02 1828 1653 1834 1 1.0
23.140 707.1 3883 6210 .843 997 3521 993 2044 0.10 02 1828 1650 1891 1 20
22634 6870 3920 6024 .840 994 468.0 1177 3000 0.10 02 1827 1635 1952 1 3.0
21868 6690 3898 5860 .839 988 6233 1391 3000 0.10 S00 1828 1619 1882 1 4.0
21.843 6687 3896 S85.6 .838 988 6284 1398 3000 0.10 SO0 1829 1618 1894 1 5.0
23.153 707.1 3884 6212 .843 997 3362 966 2035 010 02 1881 1653 1772 2 0.
23135 7065 3885 6206 .843 997 3451 981 2050 0.10 02 1881 1651 1834 2 1.0
23.025 7012 3898 6156 .842 997 3662 1017 2309 0.10 02 1879 1648 1893 2 20
22575 6852 39.21 6008 .840 99.4 4787 1193 3000 0.10 02 1881 1634 1953 2 30
21.837 668.1 3899 5850 .838 988 640.5 1413 3000 0.10 S00 1881 1617 1882 2 4.0
21812 6677 3897 5847 .838 988 6434 1417 3000 0.10 SO0 1882 1617 1894 2 S.0
22606 6845 3929 6004 .841 996 4192 1103 3000 0.10 02 1934 1641 1781 3 0.
22579 6865 39.10 6025 .341 997 4017 1075 2496 0.10 02 1933 1643 1837 3 1.0
22545 683.0 3928 5989 .840 99.6 4444 1142 3000 010 02 1934 1638 1897 3 20
22252 6758 3924 5921 .839 99.5 5428 1284 3000 0.0 02 1934 1627 1952 3 30
21.653 6625 3903 5797 837 989 7156 1505 3000 0.0 SO0 1935 1610 1882 3 4.0
21630 6622 3901 5794 .837 989 7129 1502 3000 010 SO0 1934 1610 1894 3 5.0
21357 6504 3931 5682 .835 996 5579 1305 3000 0.0 02 198 1625 1777 4 O
21354 6504 3930 S682 .835 99.6 5623 1311 3000 0.0 02 1987 1625 1840 4 1.0
2133 6500 3930 567.8 .835 99.6 5824 1338 3000 0.0 02 198 1623 1898 4 20
21225 6476 39.27 5654 834 99.5 6966 1482 3000 0.0 02 1986 1612 1953 4 3.0
20915 6419 3910 559.8 .833 99.1 9104 1724 3000 0.10 S0.0 1987 1592 1879 4 4.0
20.898 6418 39.07 5597 .833 990 90S.1 1718 3000 0.10 500 19.87 1593 1892 4 5.0
19.728 6100 3910 5294 .827 99.1 6632 1441 300.0 0.0 04 2039 1615 178 5 O
19727  610.0 39.10 529.4 .827 99.1 669.5 1449 3000 010 02 2039 1614 1842 S 1.0
19720 6099 39.10 5293 .827 99.1 7006 1487 3000 0.10 02 2039 1611 1900 S 2.0
19.679 6093 39.07 5285 .827 99.1 8073 1612 3000 0.10 02 2038 1601 1954 S 3.0
19534 6075 3895 5264 .826 98.7 1049.7 1866 3000 0.10 423 2040 1580 1878 S 4.0
19521 6074 3892 5264 .826 98.7 10544 1871 3000 0.10 436 2039 1580 1892 S 5.0
18664 5965 3796 5165 .824 962 6555 1432 3000 0.18 02 2060 1615 1842 6 O
18.663 5964 37.96 5165 .824 962 6476 1422 3000 0.18 02 2060 1616 1842 6 1.0
18.657 5964 3796 5164 .824 962 6828 1466 3000 0.18 02 2060 1613 1898 6 2.0
18623 5960 3793 SI58 824 962 8049 1609 3000 0.18 02 2060 1602 1954 6 3.0
18501 593.8 37.88 5133 .823 96.0 10539 1870 3000 0.18 355 2060 15.80 1884 6 4.0
18489 5939 3784 5134 .823 959 10648 1881 3000 0.18 369 2060 1579 1898 6 5.0
18.485 598.1 37.47 5182 .825 950 6455 1419 3000 023 03 2060 1616 1801 7 O
18484 5982 3746 5182 .825 950 6381 1410 3000 023 02 2060 1617 1857 7 1.0
18478 S98.1 3746 518.1 .825 950 6762 1457 3000 023 02 20.60 1613 1899 7 20
18442 5975 3745 5173 .824 949 8097 1614 3000 023 02 2060 16.0] 1954 7 3.0
18318 5956 3737 S515.1 .823 947 1067.4 1883 3000 023 378 2060 15.79 1883 7 4.0
18306 5952 3737 5147 .823 947 1072.8 1889 3000 023 385 2060 1578 1897 7 5.0

226




Table 6.62 Effect of Srand Sy, at Ty = 2.0 ms, no BSF, X;. < 300 um, Op = 2

log log log log log
eff Ve le Vop I Ca tax Lo X X X» Do Dy DL St Sy
23315 7174 3853 6302 .843 998 3094 918 1638 010 O 1782 1657 0. O O
23.183 7101 3864 6249 .845 996 2483 801 1838 010 O 178 1667 0. 0 10
22569 693.0 3860 6097 .844 985 1661 620 2405 010 O 1792 168 0. 0 20
21.303 6750 3756 5923 .840 952 1026 450 3000 260 O 17271 1708 0. 0 30
20.716 6732 3665 5905 .340 929 622 320 3000 260 O 1782 1725 0. 0 40
20639 6733 3651 5905 .839 926 571 301 3000 252 O 1784 1728 0. 0 S50
20631 6733 3650 S90S .839 925 566 300 3000 250 O 1784 1728 0. 0 6.0
23285 7130 3872 6264 .843 997 3149 928 1875 Q.10 O 1827 1656 0. 1 0
23.156 7063 3883 6214 844 995 263.1 830 2122 010 O 1828 1664 0. 1 1.0
22.554 6937 3853 6104 .844 986 161.2 608 2224 010 O 1828 16387 O 1 20
21293 6751 3753 5924 .B40 951 1005 444 3000 242 O 1778 17.06 O. 1 3.0
20705 6730 3664 5903 .840 929 6283 322 3000 257 O 17.86 17.24 0. 1 4.0
20628 673.0 3651 5903 .839 925 579 304 3000 246 O. 1787 17.27 0. 1 50
20620 673.0 3649 5903 339 925 573 302 3000 245 O 17.87 1728 0. 1 60
23.138 7049 3894 6192 .843 99.7 3354 964 2215 010 O 1879 1653 0. 2 O
23.034 701.8 3889 6172 .844 995 2756 855 223.0 0.10 O. 1879 1662 0. 2 1.0
22481 6899 3864 6067 .843 985 1743 639 2489 010 O. 1879 1683 0. 2 20
21223 6755 3736 5931 .841 947 1005 444 3000 0.10 O 18879 1706 0. 2 30
20621 6749 3633 5925 .41 921 584 306 3000 010 O 1877 1727 0. 2 40
20.543 675.1 3618 5928 .341 917 532 287 3000 010 O 1879 17.31 0. 2 50
20.535 675.1 3617 5928 .841 917 527 285 3000 010 O 1879 17.31 0. 2 60
22599 6843 3928 6003 .841 996 4096 1088 3000 0.10 O 1932 1642 0. 3 O
22522 6842 39.12 6007 .841 995 3398 972 2676 010 O. 1933 1652 0. 3 1.0
22.111 6768 3885 5941 .841 985 2175 T37 3000 010 O 1931 1673 0. 3 20
20977 6675 3742 5854 .840 949 1123 478 3000 0.i0 O 1930 1702 0. 3 30
20378 6670 3639 5849 .840 923 654 331 3000 010 O 1930 17223 0. 3 40
20299 667.2 3624 5851 .840 919 595 310 3000 010 O 1930 1726 0. 3 S50
20290 6672 3622 5851 .840 918 S89 308 300.0 010 O 1930 1727 0 3 60
21353 6504 3930 5682 .835 996 5579 1305 3000 010 O 198 1625 0. 4 O
21317 6498 39.26° 5678 .835 995 4959 1218 3000 0.10 O 1987 1632 0. 4 1.0
21.058 6469 3895 5654 .836 983 3261 948 3000 010 O 1986 1654 0. 4 20
20.151 6419 37.60 5608 .835 953 1675 623 3000 010 O 1983 168 0. 4 30
19560 641.6 3651 5606 .835 926 958 430 3000 010 O 1982 1708 0. 4 40
19475 6418 3635 560.7 .835 921 854 398 3000 0.10 O 1982 1713 0. 4 5.0
19.467 6418 3633 5608 .83 92.1 844 394 3000 0.10 O 19.82 1713 0. 4 60
19727 6100 39.10 5294 .827 99.1 663.2 1441 3000 010 0. 2039 1615 O S O
19.708 609.8 39.07 5293 .827 990 639.6 1412 3000 010 O 2039 1617 0. S 1.0
19.548 608.5 38.82 5284 .827 984 5140 1244 3000 010 O 2039 1630 O 5 20
18.828 605.5 37.59 5258 .827 953 3093 918 3000 0.10 O 2036 1657 O 5§ 3.0
18239 6054 3640 5259 .827 923 165.1 617 3000 010 O 2035 168 0. S5 4.0
18.146 6056 3620 5261 .828 91.8 1406 55 3000 010 O 2035 1692 0. S 5.0
18.136 6056 3618 5261 .828 91.7 1381 549 3000 010 O 2035 1693 0. 5 6.0
18.663 5963 3796 5164 .824 962 641.6 1414 3000 018 O 2060 1617 0. 6 O
18.648 596.1 3795 5163 .824 962 6289 1398 300.0 0.18 0. 2060 1618 0. 6 10
18510 5946 37.76 5150 .824 957 551.9 1297 3000 0.17 O 2060 1626 0. 6 20
17850 5903 3670 S$11.3 824 93.0 3749 1031 3000 015 O 2060 1647 0. 6 3.0
17274 5900 3552 S511.1 .824 90.1 1964 690 3000 0.14 0. 2060 1678 0. 6 4.0
17.180 5903 3531 S1.4 .824 895 1613 608 300.0 0.14 O 20.60 16.87 0. 6 50
17.170 5903 3529 5114 .824 89S 1596 604 3000 014 0. 2060 168 0. 6 6.0
18.484 5982 3746 5182 .825 950 6420 1415 3000 023 O 2060 1617 0. 7 O
18.468 5980 3744 5180 .825 949 6381 1410 3000 023 O 2060 1617 0. 7 10
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log g log log log
eff Vo Ix Vop I G %W La X Xy X» Do Dp DL S S
18328 $965 3725 5168 .825 944 5442 1286 3000 022 O 2060 1627 0. 7 20
17663 5923 3617 5131 .824 91.7 3666 1018 3000 020 0. 2060 1648 0. 7 30
17086 5919 3501 5129 825 888 19183 680 3000 019 0 2060 1679 0 7 40
16993 5923 3479 S133 525 882 1557 S594 3000 0.19 0 2060 168 0. 7 S0
16984 5922 3477 S133 RS 882 1569 S97 3000 019 O 2060 168 0. 7 60
18.465 5984 37.41 5185 825 948 6408 1413 3000 023 0. 2060 1617 0. 8 O
18.449 5982 3739 5183 .825 948 6316 1402 3000 023 0O 2060 1618 0. 8 1.0
18309 5967 3720 5170 .825 943 5477 1291 3000 023 0. 2060 1626 O. 8 20
17.643 5926 36.11 5134 824 915 3668 1018 3000 020 0. 2060 1648 0. 8 3.0
17.067 5922 3495 5132 .825 886 1902 676 3000 019 0 2060 1679 0. 8 4.0
16974 5925 3474 5135 .825 881 1573 598 3000 019 O 2060 168 0. 8 50
16964 5924 3472 5134 825 88.0 1562 595 3000 019 0 2060 1688 O. 8 60
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ORIGINAL PAGE IS
OF POOR QUALITY

Table 6.63 Effect of St and Sp at Tao = 1.0 ms, X < 300 um, Op; = 2

log log log log log
eff Vo Ju Vep T GCr twax La X X X Do Dg DL S S
22653 7030 3827 6170 .B42 997 1674 679 1426 010 02 1779 1654 1779 0 0.
22636 701.1 3837 6150 .84t 99.7 1792 708 151.7 010 02 1793 1650 1830 0 1.0
22531 6933 3867 6078 .840 996 2027 763 1889 0.10 02 1797 1644 1884 0 20
22408 6894 3866 6047 .841 995 1939 743 1925 010 02 1785 1646 19.18 0 25
22,161 6789 3889 5948 .839 993 2348 833 2405 010 02 1784 1636 1945 0 3.0
21778 6663 39.03 5829 .837 989 2865 936 3000 010 02 1784 1624 1979 0 35
21.547 662.1 3888 579.2 .837 986 3093 979 3000 0.10 500 1801 1620 1881 O 4.0
21.527 6619 3885 579.0 .837 985 3053 971 3000 0.10 500 1826 1620 1892 0 50
21526 6619 3885 5790 .837 985 3078 976 3000 010 500 1790 1620 1893 0 6.0
22.637 7017 3832 6157 .842 997 1746 697 1475 010 02 1825 1652 1788 1 O
2259 6944 3864 6095 842 995 1679 631 1888 0.10 02 1823 1654 19.02 1 1.0
22.531 6939 3861 6084 841 996 1979 752 1814 010 02 1825 1645 1887 1 20
22396 6902 3858 6055 .841 995 1916 738 1814 010 02 1826 1647 1917 1 25
22.154 6784 3891 5944 839 992 2312 826 2457 010 02 1819 1637 1942 1 30
21747 6679 388 5846 .838 99.1 2847 933 2457 010 02 1823 1625 1977 1 35
21.543 6619 3888 57190 .837 986 3114 982 3000 0.10 500 1828 16.19 1880 1 4.0
21.524 6618 3885 5789 .837 985 3062 973 3000 0.10 500 1826 1620 1892 1 50
21522 6617 3885 5789 .837 985 3082 977 3000 0.10 500 1843 1620 1894 1 6.0
22543 6939 3863 6085 841 996 1948 745 1813 010 02 1877 1646 1785 2 0.
22529 693.0 3867 6075 .840 996 201.8 761 1863 010 02 1876 1644 1829 2 10
22.447 687.7 3885 6026 .840 995 2138 788 2174 010 02 1874 1641 1884 2 2.0
22334 6849 3881 6005 .840 994 2041 766 2174 010 02 1878 1643 1919 2 25
22.110 6764 3895 5926 839 992 2265 815 2589 010 02 1874 1638 1944 2 30
21.728 6666 3891 5833 838 99.1 2867 937 2589 0.10 02 1880 1624 1976 2 3.5
21520 6612 3889 5784 .837 986 313.6 986 3000 0.10 500 18.81 16.19 1880 2 4.0
21.500 6610 3886 578.1 .837 985 3124 984 3000 0.10 500 1880 1619 1892 2 50
21499 6610 388 5781 .837 985 311.8 983 3000 0.10 500 1880 16.19 1893 2 6.0
22.145 6766 39.00 5928 .839 995 2182 798 2469 0.10 0.2 19.33 1640 1835 3 0.
22,135 6762 3901 5923 839 995 2335 830 2469 010 02 1933 1636 1898 3 1.0
2209 6743 3908 5903 .838 994 2452 855 2650 010 02 1929 1633 18950 3 20
21.870 6674 3912 5840 .838 99.2 2641 893 3000 010 02 1934 1629 1952 3 30
21375 6567 3893 5740 .836 987 339.7 1033 3000 0.10 SO0 1935 16.14 1880 3 4.0
21357 6565 3891 5739 .836 986 3397 1033 3000 010 SO0 1934 1614 1891 3 5.0
21.355 6565 3890 5739 .836 98.6 3395 1032 3000 010 S00 1934 1614 1892 3 6.0
21.156 6465 3922 5644 834 994 2991 960 3000 010 02 198 1622 1774 4 O.
21.153 6465 3922 5643 .834 994 3005 962 3000 010 02 1987 16.21 1849 4 1.0
21.137  646.1 3921 5640 .834 994 3047 970 3000 0.10 0.2 19.86 16.20 1897 4 2.0
21.041 644.1 39.18 5619 .834 993 3404 1034 3000 010 0.2 198 1613 1953 4 30
20.751 6387 39.01 5568 .833 989 4293 1179 3000 0.10 S0.0 1987 1597 1877 4 40
20.736 6386 3899 5567 .833 988 429.6 1180 3000 0.10 S0.0 1987 1597 1889 4 5.0
20.734 6386 3899 5567 .833 98.8 4297 1180 3000 0.10 500 19.87 1597 1890 4 6.0
19.650 608.9 39.04 5282 .827 99.0 3764 1095 3000 010 04 2039 1607 1772 5 O
19.649 6089 39.04 5282 .827 99.0 3782 1098 3000 0.10 02 2039 1606 1844 S5 1.0
19.643 608.8 39.03 5281 .827 99.0 3860 1111 3000 0.0 0.2 2039 1605 1896 S 2.0
19.606 608.2 39.02 5273 .826 989 4239 1171 3000 0.10 0.2 2038 1598 1954 S 3.0
19.465 6064 3889 5254 .825 986 S24.1 1318 300.0 0.10 466 2040 15.81 1873 5 4.0
19453 6063 3886 5254 .825 985 5283 1324 3000 0.10 492 2039 1580 1883 S5 5.0
19452 6063 3887 5254 .825 985 5231 1317 3000 O0.10 452 2039 1581 1891 S5 60
18.601 5955 3791 5154 .824 96.1 3857 1110 3000 O.!18 02 2060 1605 1787 6 O.
18.601 5954 3792 5154 .824 961 3834 1106 3000 0.18 02 2060 1605 1838 6 1.0
18.596 5955 3791 5154 .824 961 391.0 1119 3000 018 0.2 2060 1604 1897 6 20
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log log log log log
eff Vo I Vop I G tox Le X Xr X Do Dy DL S5t S
18.566 5952 37.88 5149 .823 96.0 431.4 1183 3000 018 02 2060 1597 1949 6 3.0
18449 593.0 37.83 5125 .822 959 5473 1350 3000 0.18 436 2060 1577 1871 6 4.0
18438 5932 37.80 5127 .822 958 - -539.2 1339 3000 018 400 2060 1578 1893 6 5.0
18436 593.0 37.81 5125 .822 959 5449 1347 3000 0.18 451 2060 1577 1887 6 6.0
18421 597.1 3743 5170 .824 949 381.0 1102 3000 023 02 2060 1606 1764 7 0.
18420 5972 3742 517.0 .824 949 3807 1102 3000 023 02 2060 1606 1841 7 1.0
18415 5972 3742 5170 .B24 949 389.8 {117 3000 023 02 2060 1604 1891 7 2.0
18384 5966 3740 5163 .824 94.8 4309 1182 3000 023 02 2060 1597 1948 7 3.0
18265 594.8 3732 5143 .823 946 5374 1336 3000 023 420 2060 1578 1875 7 4.0
18253 5%4.5 3731 5141 .823 94.6 5353 1334 3000 023 450 2060 1579 1886 7 5.0
18253 5%4.6 3731 5141 .823 946 537.6 1337 3000 023 371 2060 1578 1898 7 6.0
18402 5974 3737 517.0 .824 94.7 13801 1101 3000 023 02 2060 1606 1765 8 O.
18401 5974 3737 5172 .824 947 3820 1104 3000 023 02 2060 1606 1838 8 1.0
183% 5974 3736 5172 .824 94.7 389.8 1117 3000 024 02 2060 1604 1896 8 20
18365 5968 37.36 5164 .824 947 4324 1184 3000 024 02 2060 1597 1951 8 30
18246 5949 3727 5144 823 945 5360 1335 3000 024 359 2060 1579 1881 8 4.0
18234 5946 3727 Sl4.1 .823 945 5417 1342 3000 023 442 2060 1578 1887 8 5.0
18.233 5948 3726 5143 .823 944 5440 1346 3000 0.23 384 2060 1577 1896 8 6.0
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Table 6.64 Effect of S¢and Sy at Too = 1.0 ms, no BSF, Xi S 300 um, Oy = 2

ORIGINAL PAGE S
OF POOR QUALITY

log log log log log
eff Ve Je Vap T Gt %ax La X Xr Xo» Do Dg DL St S
22645 TS 3826 6170 .842 997 1569 653 1427 010 OQ 17.87 16.57 0. 0 O
22559 6982 3833 6136 .843 995 13784 602 1541 010 O 17.89 1663 0. 0 L0
22080 6846 3829 6016 .842 985 98.5 487 1924 010 O. 1796 1679 0. 0 20
20967 6677 37.44 5852 .839 949 674 379 3000 204 O 17.77 1696 0. 0 30
20410 6664 3653 5839 .838 926 447 286 3000 211 O 1788 17.14 0. 0 40
20331 6664 3640 S839 .838 923 419 273 3000 208 O. 1790 1717 0. 0 5.0
20.323 666.6 3637 S34.0 .838 922 41.1 269 3000 202 Q. 17.89 17.18 0. 0 60
22630 7014 3830 6159 .842 99.7 1586 657 1465 010 O 18.25 1656 0. 1 0
22545 6974 3835 6129 .343 995 1383 604 1568 0.10 O. 1827 1663 0. 1 1.0
22.071 6843 3830 6013 .842 985 98.6 487 1934 010 O 1829 1679 0. 1 20
20960 6676 3743 5852 .839 949 674 378 3000 195 O 17.82 1697 0. 1 30
20403 6663 3653 5838 .38 926 449 287 3000 206 O 17290 17.14 0. 1 4.0
20324 6663 3639 5838 .838 923 421 274 3000 202 O. 17292 17.17 0. 1 50
20316 6665 3636 S840 .838 922 411 269 3000 197 O 1793 17.18 0. 1 60
22536 6955 3849 6106 .8342 996 1676 680 1665 0.10 O. 1879 1654 0. 2 0
22.461 6925 3850 6083 .842 995 1484 631 1742 010 O. 18.79 16.60 0. 2 1.0
22.016 6817 3837 5983 .842 985 1043 S05 204.1 010 O 18.78 1677 0. 2 20
20908 668.1 37.27 580 .8340 94.5 672 378 3000 0.10 O. 1878 1697 0. 2 30
20.341 668.1 3626 5860 .840 919 425 276 3000 0.10 O 1877 1716 0. 2 4.0
20.262 6683 3611 5861 .840 915 395 262 3000 010 O 1879 17.19 0. 2 50
20.254 6683 3609 582 .340 915 39.1 260 3000 010 O 1879 17.20 0. 2 60
22.142 6773 3893 5937 840 995 2062 T 2347 010 O 1933 1643 0. 3 0
22088 676.0 3890 5927 .8340 993 1881 730 2379 010 O 1933 1648 0. 3 10
21.730 6704 3859 S88.0 .840 984 1267 S5S711 2492 0.10 O. 19.32 16.68 0. 3 20
20.717 661.8 3733 5799 .839 946 729 399 3000 010 O 1930 1693 0. 3 30
20.148 6616 3632 $579.7 .838 92{ “47.00° 296 -300.0 0.10 O 19.30 17.12 0. 3 4.0
20068 6618 3616 SM9 .839 917 433 219 3000 0.10 O. 1930 17.15 0. 3 50
20059 6618 36.15 5199 .839 916 429 278 3000 010 O 1930 17.16 0. 3 60
21.153 6465 3921 5644 834 994 2931 949 3000 010 O. 19.86 16.23 0. 4 0.
21119 6460 139.17 5640 .835 993 2752 915 3000 010 O 19.87 1627 0. 4 1.0
20.872 6434 3886 S619 .835 985 1981 753 300.0 0.10 O 19.86 1645 0. 4 20
20010 639.1 3753 5581 .834 95.1 103.3 S02 3000 010 O 19.83 16.77 0. 4 30
19.435 639.] 3645 5581 .834 924 64.1 366 3000 010 O 19.82 169 0. 4 4.0
19349 6394 3626 5585 .834 919 567 337 300.0 010 O. 19.82 17.04 0. 4 50
19340 6394 3625 5584 .834 919 57.1 338 3000 0.10 O 19.83 17.04 0. 4 6.0
19.648 6089 39.04 5282 .827 990 3764 1095 300.0 0.10 O. 20.39 16.07 0. 5 0
19.630 608.7 39.01 528.1 .827 989 364.2 1075 3000 0.10 O 2039  16.09 0. 5 1.0
19470 6074 3876 527.1 .827 983 3006 963 3000 0.10 O. 20.39  16.21 0. s 20
18.766 6043 37.54 5247 .827 952 181.3 713 3000 0.10 O. 2036 1650 0. 5 3.0
18.183 604.5 3636 5249 .827 922 101.6 49 300.0 0.10 O 2035 16.78 0. 5 4.0
18088 6046 3616 5251 .827 9.7 89.6 457 3000 010 O 2035 1634 0. 5 S50
18.078 6046 3614 5251 .827 916 88.2 453 3000 010 O 20.35 1684 0. 5 60
18600 5952 3794 5151 .824 96.2 381.2 1103 3000 0.18 O 20.60 16.06 0. 6 0.
18.585 5949 3792 5149 .824 96.1 3724 1088 3000 0.18 O. 2060 16.07 0. 6 1.0
18448 5934 3774 5137 .824 95.7 3263 1009 13000 O0.17 0. 2060 16.16 0. 6 20
17.804 589.1 3670 S099 .824 930 2185 798 3000 0.15 O 2060 16.40 0. 6 3.0
17232 5888 3552 SM99 .824 900 1249 566 3000 0.14 O 20.60 16.68 0. 6 4.0
17135 589.1 3530 5103 .824 895 1050 507 3000 0.14 O 20.60 1676 0. 6 S.0
17125 589.2 3528 5103 .824 894 1036 502 3000 0.14 O 20.60 16.77 0. 6 6.0
18419 5970 3743 5169 .824 949 1381.0 1102 13000 023 O. 20.60 16.06 0. 7 0
18403 5968 3741 5170 .824 948 3704 1085 3000 023 O 20.60 16.08 0. 7 10
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log log log log log
eff Ve Je Vmp T G Tox Le XL Xi Xy Do De DL § 5
18.264 5952 37.23 5155 .824 944 3205 999 3000 022 0 2060 1617 0. 7 20
17.614 5919 3611 5127 824 915 2135 787 3000 020 O 2060 1641 O0. 7 3.0
17043 5910 3499 5120 .824 887 131202 553 3000 019 0 2060 1670 0 7 40
16947 591.1 3478 5)2.1 .824 882 1035 502 3000 019 0 2060 1677 0. 7 50
16937 5912 3475 5123 .824 88.1 985 486 3000 019 0. 2060 1679 0. 7 6.0
18400 5972 3738 S517.1 .824 94.8 380.1 1101 3000 023 0 2060 1606 0. 8 O
‘18385 5970 3736 S17.1 .824 947 370.1 1085 3000 023 0. 2060 1608 0 8 1.0
18245 5954 37.17 5156 .824 942 3220 1002 3000 022 O 2060 1617 0. 8 20
17595 5912 3611 5121 824 915 2126 185 3000 020 O 2060 1641 0. 8 30
17.023 5910 3495 5120 .824 886 1208 554 3000 019 0. 2060 1670 0. 8 4.0
16927 5914 3472 5124 .824 88.0 1014 496 3000 0.19 O 2060 1678 0. 8 5.0
16917 5914 3470 5124 824 88.0 994 489 3000 019 0 2060 1679 0. 8 6.0



Table 6.65 Effect of S¢ and Sy, at a0 = 0.7 ms, X <300 pm, Op; = 2

log log log log log
f Vo Ju Vap T Ca Wwa L& X Xc X Do Ds DL St S
22297 6954 38.09 6104 .842 996 1146 S60 1312 Q10 02 1786 1655 1734 0 O
22284 6544 3814 6094 .841 996 1182 S71 1347 010 02 1786 1654 1823 0 1.0
22209 689.8 3828 6052 .841 995 1247 590 1494 0.0 02 1788 1651 188 0 20
21.88 6747 3867 5909 .839 992 1615 690 2079 010 02 1791 1637 1947 0 3.0
21326 6571 3881 544 436 984 2196 825 3000 Q10 500 1785 1619 1879 0 4.0
21309 657.1 3878 5744 836 983 2152 816 3000 Q10 500 1786 1620 1890 0 5.0
21308 6569 3879 5742 536 983 2200 826 000 010 500 1819 1619 1891 0 6.0
22278 6906 3835 6059 .841 995 1216 581 1563 Q10 02 1827 1652 1750 1 O
22266 690.1 3836 6054 .841 995 121.8 S82 1579 010 02 1825 1652 1823 1 1.0
22196 6869 3844 6024 .341 995 1299 60S 1677 010 02 1819 1649 1833 1 20
21880 6746 3866 5909 .839 992 1589 683 2075 010 02 1823 1638 1946 1 3.0
21323 6572 3880 5745 .836 984 2159 817 3000 010 500 1824 1620 1878 1 4.0
21306 6570 3878 5744 836 983 2149 815 3000 Q11 S00 1823 1620 189 1 50
21305 6570 3878 5743 .836 983 2153 816 3000 0.10 500 1824 1620 1891 1 6.0
22201 6858 3852 6014 .40 994 1269 597 1763 010 02 1879 1650 1765 2 O
22.191 6854 3852 6010 .340 994 1281 600 1775 010 02 1880 1649 1825 2 1.0
22.130 6829 3858 598.7 840 994 1348 619 1858 010 02 1879 1647 1888 2 20
21.842 673.0 3870 5894 .839 992 1637 65 2121 010 02 1877 1636 1946 2 30
21303 6565 3881 S73.8 .836 984 2199 826 3000 010 S00 18830 1619 1879 2 4.0
21.287 6564 3879 ST3.7 .83¢ 983 2177 821 3000 Q10 S00 1879 1619 1890 2 S50
21.285 6564 3879 5737 836 983 2179 822 3000 010 500 1878 1619 1891 2 60
21.880 6733 3873 5899 .839 994 1474 653 2064 010 0.2 1932 1642 1769 3 O
21874 6731 3874 5896 .839 994 1510 662 2064 0.10 02 1932 1641 1827 3 1.0
2183 6718 3876 58384 .839 994 1555 674 2120 0.10 02 1932 1639 1890 3 20
21.633 665.2 3883 S82.1 .837 99.2 180.1 735 2350 010 0.2 1933 1631 1948 3 3.0
21.180 6525 388 S699 835 985 2392 87 3000 010 500 1933 1613 1879 3 40
21.165 6525 3883 5700 .835 984 2333 855 3000 0.10 500 1933 1615 1890 3 5.0
21.163 652.5 3883 570.0 .835 984 2342 856 3000 010 500 1933 1615 1891 3 6.0
21.004 6436 39.14 S61.6 834 992 2113 87 3000 010 0.2 19385 1621 1770 4 0.
21002 6435 39.14 S614 834 992 2156 817 3000 010 0.2 1986 1620 1832 4 1.0
20987 6433 39.14 S561.2 834 992 2181 822 3000 010 02 1986 1619 1895 4 20
20830 6432 3883 5613 834 994 2341 856 2226 010 02 1984 1615 1949 4 30
20626 6363 3895 5544 .832 987 2961 978 300.0 0.10 S00 1987 1598 1877 4 4.0
20.613 6363 3893 5544 .832 987 2939 974 3000 0.10 500 1987 1599 1888 4 S.0
20611 6362 3893 S544 832 987 2965 979 3000 010 500 1987 1598 1890 4 6.0
19588 608.0 3899 5273 826 988 2766 941 3000 010 02 2039 1603 1759 S5 O
19.587 608.0 3898 5273 .826 988 2761 940 3000 0.10 02 2040 1604 1835 S5 1.0
19.581 6079 3899 S27.1 .826 988 2839 955 3000 010 02 2040 1602 1896 S 20
19546 6073 3897 5264 .826 988 3028 991 3000 010 02 2039 1597 1953 5 3.0
19.409 6055 3884 5246 .825 985 367.1 1103 3000 010 SO0 2038 1581 1869 S 4.0
19.397 6054 3882 5245 .825 984 3695 1107 3000 010 500 2040 1580 1882 S5 5.0
19.396 6054 3881 5246 .825 984 3665 1102 3000 0.10 SO0 2040 1581 1882 S 6.0
18.552 5933 3799 5132 .823 963 2855 958 3000 017 02 2060 1601 1807 6 O
18551 593.1 3800 5130 .823 963 2858 959 3000 O0.16 02 2060 1601 1828 6 1.0
18546 593.0 38.00 5130 .823 963 2885 964 3000 016 02 2060 1600 189 6 2.0
18519 5924 3800 5122 .823 963 3105 1005 3000 016 02 2060 1595 1954 6 3.0
18406 5903 3794 5100 .822 962 3797 1124 3000 0.16 456 2060 1578 1869 6 4.0
18394 590.3 3792 5099 .822 96.1 3800 1124 3000 016 472 2060 1578 1881 6 5.0
18392 5904 3791 5100 .822 96.1 3793 1123 3000 0.16 496 2060 1578 1880 6 6.0
18369 595.1 3747 5150 .824 950 2792 947 3000 021 02 2060 1603 1867 7 0.
18368 5953 3746 5151 .824 950 2882 964 3000 022 02 2060 1600 1886 7 1.0
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log log log log log
eflf Ve J Vmp ff G T Ly XX X X Do Dg DL S 5
18364 595.1 3747 5149 .823 950 2875 962 3000 021 02 2060 1601 1897 7 20
18336 5946 3746 S144 .823 950 3095 1003 3000 022 02 2060 1595 1954 7 3.0
18219 5922 3741 S11.8 .822 948 3782 1121 300.0 021 485 2060 1578 1866 7T 40
18208 5927 3735 5124 .822 947 3711 1120 3000 021 500 2060 1578 1878 7 5.0
18205 S92.1 3739 5117 822 94.8 3757 1117 %00 020 S00 2060 1579 1880 7 6.0
18350 5952 3743 51S5.1 .824 949 2850 958 3000 022 02 2060 1601 1800 8 O
18348 5948 3746 S14.7 823 949 2850 958 3000 021 02 2060 1601 1835 8 1.0
18344 5950 3743 5149 .823 949 2866 961 3000 022 02 2060 1601 1897 8 20
18.316 5945 3743 5143 .823 949 3091 1002 3000 022 0.2 2060 1595 1953 8 30
18.197 5919 3739 S11.6 .822 948 3775 1120 3000 021 500 2060 1578 1866 8 4.0
18.187 5924 3734 5120 .822 946 3779 1121 3000 021 500 2060 1578 1879 B 5.0
18.186 5924 3733 512.1 .822 946 3756 1117 3000 021 S0.0 2060 1579 1880 8 6.0
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Table 6.66 Effect of S¢ and Sy, at Tao = 0.4 ms, Xp < 500 um, Op; = 2

log log log log log
off Ve Je  Vmp M Cr tax Le Xt Xe X Do Ds DL St S
21729 6837 3782 S%.5 840 995 697 440 1152 010 02 1799 1652 1731 0 O
21719 6830 37.85 5989 .840 995 709 444 1173 010 02 1787 1651 1802 0 10
21666 679.7 37.96 5958 340 994 742 457 1264 010 02 1799 1649 1833 0 20
21420 6672 3832 5839 838 99.1 934 524 1683 010 02 1814 1636 1942 0 30
20911 649.7 38.55 S67.4 835 982 1300 636 2589 010 500 1831 1617 1877 0 4.0
20897 6493 3855 S67.0 .835 98.1 1298 636 2661 010 50.0 1789 1617 1887 0 5.0
20896 6493 3855 5669 835 98.1 1296 635 2666 010 500 1823 1617 1887 0 60
21720 6832 37.84 5%9.1 840 9.5 699 440 1163 010 02 1821 1652 1734 1 0.
21711 6826 37.85 5986 .840 995 700 441 1179 010 02 1812 1652 1823 1 1.0
21659 6793 3797 5954 .840 994 751 460 1277 010 02 1816 1648 1883 1 20
21416 6672 3831 S840 838 9.1 912 S17 1675 010 02 1820 1638 1943 1 30
20909 6493 38.58 567.0 .835 98.1 1296 635 2661 010 500 1820 1617 1873 1 4.0
20895 649.3 3855 S67.0 .835 98.1 1288 633 2663 0.0 S0.0 1821 1617 1885 1 50
20894 6492 3855 5669 835 98.1 129.1 634 2672 010 S0.0 1829 1617 18838 1 6.0
21669 6796 3797 5958 .340 994 729 452 1263 010 02 1876 1650 1780 2 O.
21661 6792 3798 5954 840 994 T3.6 454 1275 010 02 1876 1649 1813 2 1.0
21614 6765 38.07 SN.8 839 994 T4 469 1358 010 02 1875 1647 1882 2 20
21387 6658 3835 5826 .838 99.1 939 526 1721 010 02 1876 1636 1943 2 3.0
20893 6490 3856 5668 .835 98.1 1260 625 269.3 0.10 S0.0 1877 1619 1877 2 4.0
20880 648.5 38.58 5662 .835 98.1 1317 641 2695 0.10 S0.0 1876 1616 1886 2 5.0
20879 6484 3858 S66.1 .835 98.1 1315 641 2714 010 S0.0 18380 1616 1887 2 6.0
21426 6664 3837 SE34 838 993 873 S04 1664 010 02 1932 1640 1803 3 0.
21421 6663 3837 5833 838 993 873 S04 1664 010 02 1932 1640 1803 3 1.0
21390 6650 3840 5820 838 993 892 SII 1720 010 02 1932 1639 1883 3 20
21224 6587 3852 5759 836 99.1 1033 557 1950 010 02 1933 1631 1944 3 30
20800 6454 3863 5633 .834 98.1 1336 646 2794 010 S0.0 1932 1615 1876 3 4.0
20787 6452 38.63 5630 .834 98.1 1370 656 2796 0.10 500 1932 1613 1885 3 50
2078 6452 3863 5630 .834 981 1367 655 2792 0.10 S0.0 1932 1613 1838 3 60
20697 639.1 3888 5572 .833 990 1250 62 2593 010 02 1985 1619 1808 4 O
20693 6393 3885 5575 .833 99.0 1235 618 2524 010 02 1986 1620 1898 4 1.0
20683 6388 3887 559 .833 99.0 1280 631 2567 010 02 1985 1618 1897 4 20
20593 6385 3872 5568 .833 99.1 1314 640 2226 010 02 1984 1616 1947 4 3.0
20362 6306 3885 5490 .831 983 1658 731 3195 010 SO0 1988 1600 1874 4 40
20352 6306 3884 5490 .831 983 1640 726 3227 010 SO0 1987 1601 1886 4 5.0
20351 6308 3882 5492 .831 982 1618 721 3188 0.0 S0.0 1985 1602 1886 4 60
19454 6051 3896 5242 .825 984 1736 750 3514 010 02 2039 1597 1806 S O.
19453 6051 3896 5242 .825 983 1730 749 3515 010 02 2040 1597 1896 S 1.0
19.448 6050 3896 5240 .825 983 1743 752 3524 010 02 2038 1596 1921 S 20
19420 6045 3895 S52B4 825 983 1807 767 3578 010 02 2039 1593 1957 5 3.0
19309 6023 3892 5211 .824 98.0 2106 835 391.1 010 S0.0 2038 1580 1879 5 4.0
19304 6024 3889 5213 824 979 2050 823 3918 010 500 2040 1583 1882 S5 S0
19303 6024 3889 5213 .824 979 2050 823 3951 010 S50.0 2040 1583 1885 S5 6.0
18461 591.2 3801 5106 .822 958 1827 772 3708 017 02 2060 1593 1878 6 O.
18460 5909 3803 5103 .821 959 1849 777 3755 016 02 2060 1592 1913 6 1.0
18457 5909 38.02 5104 .822 959 1850 777 3665 0.6 02 2060 1592 1929 6 20
18436 5903 3803 5097 .821 959 193.6 797 3682 016 02 2060 1588 1952 6 3.0
18353 5883 3804 5074 .820 957 217.1 850 4052 0.6 456 2060 1578 1873 6 4.0
18347 5882 3803 5069 .820 957 2173 850 4100 016 472 2060 1578 1885 6 SO
18347 5883 3801 5075 .820 95.6 2139 843 408.3 0.6 49.6 2060 1579 1884 6 6.0
18273 §92.7 3751 121 .822 946 1858 TT9 3682 021 02 2060 1591 1918 7 O.
18269 5927 3751 5120 .822 944 1835 774 3999 022 02 2060 1592 1931 7 1.0
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log log log log log

eff Vee Ju Vmp I Gt Tax La XL X X Do Dg DL S S
18270 5928 3749 5121 822 945 1845 TI6 39S 021 02 2060 1592 1930 7 20
18248 5924 3748 S11.7 .822 945 1920 794 3693 022 02 2060 1589 1950 7 3.0
18.163 589.8 37.53 5089 .821 944 2189 854 408.1 021 485 2060 1577 1866 7T 4.0
18.156 590.4 37.46 5095 .821 942 2156 846 4086 021 SO0 2060 1578 1882 7 S50
18.156 589.8 37.51 S509.0 .821 943 2148 845 408.8 020 S0.0 2060 1579 1887 7 6.0

18254 5928 37.46 5121 .822 944 1850 T7T7T 3761 022 02 2060 1592 1897 8 O
18253 5925 3748 5120 .822 945 1841 7S 3659 021 02 2060 1592 1906 8 1.0
18250 5927 3746 512.1 .822 944 1845 776 3701 022 02 2060 1592 1930 8 20
18228 5922 3746 S11.5 822 944 1916 793 3740 022 02 2060 1589 1959 8 3.0
18.143 5896 37.50 S08.7 .820 94.3 2189 3854 408.1 021 SO0 2060 1577 1866 8 4.0
18.137 590.0 3745 5092 .821 942 2160 847 4098 021 500 2060 1578 1886 8 5.0
18.136 590.1 3744 5093 .821 94.2 2147 845 4103 021 500 2060 1579 1885 8 6.0
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Table 6.67 Effect of S¢ and Sp at Tag = 0.1 ms, X <300 um, Opy = 2

log log log log log
eff Va Je Ve T G % L X X X Do Dg Dv. S¢ S
20318 6558 37.05 5734 336 993 268 284 798 0.10 150 178 1629 1666 0 O.
20277 6570 3691 5745 836 992 207 244 751 Q10 02 1804 1643 1769 0 1.0
20251 6549 3699 ST2.5 836 9.2 216 250 79.] 010 02 1803 164 1860 O 20
20.127 6474 3724 5654 335 989 247 271 947 Q.10 02 1801 1633 1933 0 3.0
19961 6420 3729 5602 .834 988 274 288 1000 010 02 1789 1627 1963 0 3.5
19.696 629.1 3767 5479 .831 976 373 344 1634 010 500 1792 16.08 1842 0 4.0
19677 6286 3766 5474 831 974 372 M4 1689 0.10 500 1781 1608 1858 0 5.0
19675 6286 3766 S474 831 974 373 344 1691 0.10 500 1799 1608 1861 0 &0
20314 6558 3704 S7T35 8336 993 268 284 796 010 146 1803 1629 1665 1 Q.
20275  656.7 3692 5742 836 99.2 207 244 756 010 02 1816 1643 1770 1 1.0
20.248 6549 3698 ST.S 836 99.1 213 248 790 010 02 1815 1642 1860 1! 20
20125 6473 3725 5652 835 989 249 272 95.1 010 02 1814 1633 1933 1 30
19958 6419 3729 5602 834 988 274 288 1000 0.0 02 17.84 1627 1962 1 35
19.694 629.1 3766 5479 .831 976 374 345 1623 010 500 1843 1607 1841 1 4.0
19676 6286 37.66 5474 831 974 375 WMS 1679 0.10 500 1808 1607 185 1 S.0
19674 6286 3766 5474 831 974 375 345 1683 0.10 500 1832 1607 1861 1 &0
20311 6534 37.19 S71.1 836 993 351 332 848 0.10 500 1857 1612 1683 2 O.
20.253 6549 3699 S72.5 836 9.2 213 48 789 010 02 1863 1642 1770 2 1.0
20228 6534 37.04 5711 .836 99.1 217 250 81.8 0.10 02 1863 1641 1859 2 220
20.110 6464 3728 5645 .8334 989 49 272 9%.8 010 02 1863 1633 1932 2 30
19947 6414 37.30 559.7 .834 988 279 291 1000 010 02 1863 1626 1963 2 35
19.687 6285 3769 5413 831 976 38.1 348 164.1 0.10 S0.0 1862 1606 1842 2 4.0
19.669 6283 37.67 5471 .831 974 375 345 1685 0.10 S00 1862 1607 1858 2 5.0
19.667 6283 37.66 5471 831 974 372 344 1692 0.10 S0.0 1860 1608 1860 2 6.0
20.143 647.8 3724 5659 .8335 90 233 262 924 0.10 02 1927 1637 1728 3 0.
20.140 6474 3726 5655 .835 990 235 263 936 0.10 02 1926 1636 1771 3 1.0
20.120 6463 3730 S64.4 835 990 243 268 962 0.10 02 1927 1634 1860 3 20
20022 6415 3744 5598 .834 988 269 285 1071 0.10 02 1925 1629 1933 3 30
19871 6390 37.32 5575 .833 989 288 296 1000 0.10 0.2 1927 1624 1963 3 3.5
19640 6265 3774 5454 831 976 39.1 353 1684 0.10 500 19.27 1604 1841 3 4.0
19.622 6263 37.72 5451 .831 975 387 1351 1727 0.10 S00 1926 1605 1858 3 5.0
19.620 6263 3771 5452 .831 974 383 349 1732 0.10 SO0 1927 1606 1860 3 6.0
19.790 6274 3794 5465 .831 989 380 348 1413 0.10 S0.0 1983 1606 1671 4 O
19714 6273 37.81 5468 .831 987 317 314 1371 010 02 1982 1618 1770 4 1.0
19.704 627.1 37.81 S46.1 .831 986 314 312 1383 0.10 02 1982 1619 1870 4 20
19.651 625.2 3784 5442 831 986 338 325 1430 010 02 1983 1614 1936 4 3.0
19395 6169 3794 5362 .829 976 432 374 1921 0.10 S00 19.84 1597 1840 4 4.0
19379 6170 3790 533 .829 975 428 372 1928 0.10 500 1984 1598 1857 4 5.0
19377 6169 3790 5362 .829 975 432 374 1923 0.10 S00 1984 1597 1858 4 6.0
18866 598.8 3820 5188 .825 98.2 493 402 1997 0.10 SO0 2037 158 1677 S O.
18796 598.6 38.07 5186 .825 979 444 380 1979 0.10 02 2038 15.95 1885 S 1.0
18793 5984 3808 5184 .825 978 449 382 1999 0.10 02 2037 1594 1873 § 20
18770 5980 3807 5179 .824 978 458 386 2005 0.10 02 2038 1592 1941 S 3.0
18.637 5953 3800 5153 .824 976 S1.8 414 2049 0.10 21.8 2038 1582 1890 5 4.0
18.628 5946 3804 5146 .824 972 531 419 2348 0.10 499 2036 1580 1852 S5 S.0
18.627 5945 38.05 S147 .823 972 535 421 2354 010 SO0 2036 1579 1855 S5 6.0
17913 583.7 3737 5042 .821 959 496 404 2048 0.14 02 2060 158 1763 6 O.
17910 583.0 3743 5034 .821 958 505 408 2223 0.14 0.2 2060 1584 1793 6 1.0
17906 583.0 3742 5034 .821 958 506 408 2229 0.14 02 2060 1584 1804 6 20
17.893 5825 3742 503.0 .821 961 499 405 20S.1 013 02 2060 1585 1948 6 3.0
17.806 580.2 3743 5006 .820 957 S7.1 437 2304 0.13 310 2060 1573 1867 6 4.0
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log log log log log
efl Vee I Vop I Cr T L XL X X Do Dy DL S Sy
17.802 5796 3747 500.0 .820 955 SB.0 440 2540 0.13 499 2060 1571 1854 6 5.0
17.801 5794 3749 499.7 819 954 58.6 443 260.8 0.13 496 2060 1570 1855 6 60
17.714 5852 3684 5057 .822 946 492 402 2050 019 02 2060 1587 1763 7 O
17709 5843 3691 5046 .821 945 505 408 2228 018 02 2060 1584 1926 7 1.0
17707 5847 3687 505.1 .821 944 495 403 2194 0.8 02 2060 158 1929 7 20
17.694 5847 3684 505.1 .821 946 S0.5 408 2050 0.8 02 2060 1584 1939 7 3.0
17611 5810 3696 5014 .820 942 58.1 441 2516 O0.17 499 2060 1571 1833 7 4.0
17.601 S806 3698 S01.0 .820 943 58.0 440 2510 0.17 SO0 2060 1571 1852 7 S.0
17599 581.0 3694 5013 .820 94.1 578 440 2571 017 S0.0 2060 1571 1854 7 60
17.691 5849 3682 5053 .821 944 495 403 2137 019 02 2060 158 1782 8 O
17688 S849 3682 5053 .821 943 495 403 2172 019 02 2060 158 1928 8 1.0
1768 584.2 3687 5046 .821 944 S03 407 2222 0.18 02 2060 1585 1926 8 20
17673 5849 3678 5054 .821 944 S05 408 2051 0.19 02 2060 158 1941 8 3.0
17590 S581.2 3691 SO01.5 .820 94.0 S58.1 441 2528 0.18 500 2060 1571 1833 8 4.0
17607 5809 369 5013 .820 942 580 440 2510 017 500 2060 1571 1852 8 S0
17.578 581.1 36.89 S01.4 .820 939 579 440 2570 0.18 500 2060 1571 1854 8 6.0
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Table 6.68 Effect of S¢ and Sy at Tyg = 0.1 ms, ?(x_ <100 um, Op = 2

log log log log log
eff Ve I Vop T G tx L X Xo Xy Do Dy DL St Sy
20283 6573 3690 5748 .836 992 206 243 746 010 02 1813 1644 1724 O O
20.277 6569 3691 5744 836 992 207 244 752 010 02 1804 1643 1769 O 10
20.251 6550 3699 5725 .836 9.2 216 250 790 010 02 1803 1641 1860 0 20
20.127 6474 3725 5654 .835 989 247 271 948 010 02 1805 1633 1933 0 3.0
19.555 6363 3691 5547 .833 978 408 362 1000 0.10 498 1797 1601 1834 0 40
19513 6365 3682 5549 .833 975 405 361 1000 010 498 1830 1602 1851 O 5.0
19510 6365 3681 5549 .83 975 405 361 1000 0.10 498 1791 1602 1853 0 60
20279 6564 3694 S740 836 992 207 244 768 010 02 1831 1643 1728 1 0
20275 6567 3692 5742 836 992 207 244 756 010 02 1816 1643 1770 1 10
20.248 6549 3698 ST26 .836 99.1 213 248 789 010 02 1815 1642 1860 1 20
20.125 6473 3725 5652 .835 989 249 272 9s.1 010 02 1814 1633 1933 1 30
19.553 6362 3692 5546 .833 978 411 363 1000 0.10 498 1852 1601 1834 1 4.0
19.512 6364 3682 5549 .833 975 409 363 1000 0.0 498 1799 1601 1853 1 5.0
19.508 6365 3681 5550 .833 975 40.1 358 1000 0.10 498 1824 1603 1853 1 60
20.258 6548 37.01 ST24 .836 992 213 248 798 010 02 1866 1642 1714 2 O
20253 6549 3699 ST25 .86 992 213 248 789 010 02 1863 1642 1769 2 1.0
20228 6534 3704 S711 836 99.1 21.7 250 818 010 02 1862 1641 1859 2 20
20.110 6464 3728 5644 .834 989 249 272 971 010 02 1865 1633 1930 2 30
19.544 6359 3691 5544 833 978 407 362 1000 0.10 498 1855 1601 1833 2 4.0
19.502 6361 3682 56 .833 975 407 361 1000 0.10 498 1856 1601 1851 2 S.0
19.498 6362 3681 5546 .833 975 405 361 1000 0.10 498 1854 1602 1853 2 6.0
20.143 6478 3725 5658 .835 990 233 262 926 010 02 1925 1637 174 3 0.
20.140 6474 3726 5655 .835 9.0 235 263 936 010 02 1926 1636 1771 3 1.0
20.120 6463 3730 5644 .B3S 99.0 243 268 959 0.10 02 1927 1634 1867 3 20
20.022 6429 3734 S61.2 .834 989 261 280 1000 010 02 1927 1630 1933 3 30
19.483 6339 3693 5525 .832 978 4.0 368 1000 0.10 49.8 1924 1599 1834 3 4.0
19.440 6342 3683 5528 .832 976 414 365 1000 0.10 498 1923 1600 1851 3 S0
19.436 6342 3682 5528 .832 975 414 365 1000 0.0 498 1923 1600 1853 3 60
19.683 6322 3740 5511 .832 99.1 289 297 1000 0.10 05 1984 1624 1658 4 0.
19678 6322 3740 5511 .832 9.1 287 296 1000 010 0.2 1984 1625 1770 4 1.0
19666 6319 3740 5508 .832 99.1 29.1 298 1000 0.10 02 1984 1624 1861 4 20
19.601 6303 37.38 5493 832 990 308 308 1000 010 02 1984 1620 1934 4 30
19.169 6239 37.00 5430 .830 98.0 489 401 1000 0.10 49.8 1985 - 1587 1828 4 4.0
19.124  624.1 3690 5437 .830 977 485 399 1000 0.10 49.8 1985 1588 1847 4 5.0
19.120 6242 36839 5433 .830 977 484 398 1000 0.10 49.8 1985 1588 1850 4 60
18.643 6036 3736 5239 .827 989 51.0 410 1000 0.10 500 2040 1583 1678 S O
18.588 6032 37.28 5234 .827 988 402 359 1000 0.0 02 2038 1602 1877 S5 1.0
18.585 603.1 37.28 5233 .827 988 407 361 1000 0.0 02 2038 1602 1869 S5 20
18.558 6025 37.27 528 .826 987 41.7 367 1000 0.0 02 2038 1600 1934 S 3.0
18355 5990 37.12 5193 .82 983 S55 430 1000 0.0 217 2039 1576 1869 S 4.0
18229 5996 3683 5198 .825 976 62.1 457 1000 0.10 498 2039 1564 1836 S5 5.0
18224 5995 3682 5197 .825 975 622 458 1000 0.10 498 2039 1564 1837 S 60
17632 5884 3639 5093 .823 964 437 376 1000 015 02 2060 1596 1758 6 O
17632 5884 3640 5093 .823 964 445 380 1000 0.5 02 2060 1595 178 6 1.0
17.628 5883 3639 5092 .823 964 437 376 1000 0.15 02 2060 1596 1805 6 20
17.608 5852 3658 5061 .822 969 495 403 1000 013 02 2060 158 1944 6 3.0
17433 5848 3625 5057 .822 960 623 458 1000 0.15 309 2060 1563 1843 6 4.0
17324 5840 36.06 5051 .822 955 3.4 462 1000 0.14 498 2060 1561 1838 6 5.0
17320 5839 3607 5050 .822 955 €39 465 1000 0.14 495 2060 1560 1839 6 6.0
17439 590.1 3588 5109 .824 950 436 376 1000 020 02 2060 1596 1758 7 0.
17435 5899 3588 5108 .824 950 440 378 1000 020 02 2060 159 1917 7 1.0
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log log og log log

eff Ve I Vmp T Gt T Lo X X X Do Dp DL S S
17433 5898 3588 5107 .824 950 44.1 378 1000 020 02 2060 1595 1920 7 20
17.416 589.2 35.89 5100 .823 951 47.1 392 1000 020 02 2060 1590 1933 7 3.0
17.178 5855 3565 S065 .823 944 636 463 1000 0.19 498 2060 1561 18.17 7 40
17.124 5858 35.54 506.7 .8322 94.1 674 478 1000 0.19 498 2060 1554 1830 7 S0
17.119 585.7 35.54 5065 .822 94.1 67.1 477 1000 0.19 498 2060 1554 1832 7 60
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Table 6.69 Effect of Sy and Sy at Tgo = 0.1 ms, no BSF, X¢ < 100 um, Oy = 2

log log log log log
eff Ve Ju Vop T G % Lo X X¢ Xe Do D DL St S
20280 6573 3689 S748 836 992 206 243 743 010 0. 1809 1644 0 0 O
20255 6562 3691 ST38 836 991 201 239 763 010 0. 1804 1645 0 O 1.0
20055 6504 3690 5686 .836 985 170 216 856 010 O. 1803 1654 0 0 20
19.160 6387 13597 S577 B34 953 112 166 1000 010 O 1818 1675 0. 0 3.0
18015 6286 3455 S472 829 915 13 125 1000 210 0. 1785 1695 0. 0 4.0
17660 6362 3333 5552 .833 883 S0 9 1000 011 0. 1867 1712 0 0 50
17627 6361 3328 551 .833 881 SO 95 1000 012 0. 1863 1713 0 O 6.0
20277 6564 3694 5739 836 992 207 244 768 0.0 0. 1827 1643 0 1 O
20252 6563 3690 ST39 836 9.1 200 239 756 010 0. 1818 1645 0 1 10
20051 6521 3678 S703 836 986 163 211 789 010 0. 1815 1656 0. 1 20
19.148 6390 3593 SS8.0 .834 954 110 164 951 010 0. 1849 1676 0. 1 30
17955 6353 3393 S544 833 899 62 112 1000 010 0. 1864 1703 0 1 40
17659 6361 3333 5551 .833 883 S1 97 1000 010 O 1872 1702 O 1 50
17626 6362 3326 5552 .833 881 49 95 1000 010 O 1871 1713 O 1 6.0
20256 6547 3701 5724 336 992 213 248 798 010 0. 1864 1642 0. 2 O
20232 6546 3697 ST23 836 99.1 204 242 789 0.10 0. 1863 1644 0 2 10
20035 6507 3683 5690 .836 986 167 214 818 010 0. 1862 1655 0 2 20
19.143 6384 3596 5574 834 954 112 166 971 010 0. 1872 1675 0 2 30
17946 6355 3390 5546 833 898 61 110 1000 010 0. 1868 1704 O 2 40
17650 6355 3335 5546 833 883 52 98 1000 010 O 1871 1711 O 2 SO
17617 6356 3328 5546 833 882 S1 97 1000 010 0. 1871 1702 O 2 60
20.141 6476 3725 5656 .835 990 233 262 933 010 0 1925 1637 0 3 O
20.120 6469 3726 5655 835 990 230 260 946 010 0. 1926 1638 0. 3 1.0
19940 6433 37.14 5619 835 984 196 236 1000 010 0. 1927 1646 0. 3 20
19081 6356 3602 5548 833 954 11.8 171 1000 010 0. 1927 1672 0. 3 30
17.887 6327 3395 5520 833 899 64 114 1000 010 0. 1927 1701 0 3 40
17590 6336 3334 S528 833 883 S1 98 1000 010 0. 1926 1711 0 3 50
17.557 6337 3328 5529 833 881 S50 9 1000 010 O 1925 1712 0 3 60
19679 6322 37.40 S51.0 832 99.1 289 297 1000 010 0. 1984 1624 0. 4 O
19.661 6319 3738 5509 .832 990 282 293 1000 010 O 1983 1626 0 4 10
19512 6301 3721 5494 .832 985 234 262 1000 010 O. 1984 1637 0 4 20
18744 6239 3614 5436 .831 957 141 192 1000 010 0. 1984 1664 O 4 30
17578 6214 3406 S412 .831 902 75 128 1000 010 O 1980 1694 0 4 40
17273 6223 3342 5420 .831 8.5 59 108 1000 010 0. 1980 1705 0 4 50
17238 6224 3334 S42.1 831 883 S8 106 1000 010 O 1980 1706 0. 4 6.0
18.589 6032 3728 S23.4 827 988 399 357 1000 010 0. 2037 1603 O S5 O
18577 6031 3726 S$34 827 987 390 353 1000 010 O 2037 1605 O 5 10
18473 6021 3712 525 .827 983 333 322 1000 010 0. 2037 1615 O S 20
17.861 5979 3617 S188 .826 958 21.0 246 1000 0.10 0. 2036 1643 0. 5 3.0
16.751 5958 3406 5168 .825 902 111 165 1000 010 0. 2035 1675 O S5 4.0
16424 5965 3335 5174 825 883 85 138 1000 010 0. 2035 168 0. 5 50
16387 5966 33.27 5175 826 881 81 134 - 1000 010 0. 2034 1690 0 5 6.0
17.631 588.1 3641 S509.0 823 964 437 376 1000 015 0. 2060 1596 O. 6 O.
17622 588.0 3640 509.0 .823 964 426 371 1000 0.15 0. 2060 1598 O 6 1.0
17537 587 3631 5079 .823 962 378 347 1000 014 0. 2060 1607 O 6 20
17003 5809 3560 502.5 .822 943 260 279 1000 012 0. 2060 1631 0 6 30
15944 STI0 3364 4989 .821 89.1 143 194 1000 0.0 0. 2060 1663 0 6 4.0
15611 5793 3279 S01.0 822 8.9 102 156 1000 011 0. 2060 1679 0. 6 50
15570 5782 3278 4999 .821 8.8 96 150 1000 010 0. 2060 1682 0. 6 60
17438 5899 3589 5107 .824 951 429 372 1000 020 O. 2060 1598 O 7 0.
17428 589.7 3588 5105 .824 950 423 369 1000 020 0. 2060 1599 0. 7 1.0
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log log log log log

eff Ve Ju Vmp I Cr T Le X, Xy X» Do Dy DL S S
17342 5885 3578 5096 .824 948 371 343 1000 019 0. 2060 16.08 0. 7 20
16.803 5835 3500 5050 .823 927 4.8 272 1000 0.17 0. 2060 16.33 0. 7 30
15741 5790 33.08 5008 .822 8.6 13.7 189 1000 0.14 O. 2060 16.65 0. 7 40
15411 5813 3225 5029 .822 854 98 152 1000 015 0. 2060 16.81 0. 7 50
15373 S81S 3216 S03.1 .822 852 94 148 1000 0.15 0. 2060 16.834 0. 7 6.0
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Table 6.70 Effect of S¢ and Sp at To0 = 0.05 ms, Xi < 100 um, Op; = 2

log log g log log
eflf Ve Je v-p fr Cr  Tounx Le Xv X¢ Xo Do Ds Dy St Sp
19.546 6448 3635 5629 .834 9.1 112 181 580 010 02 1807 1639 17.10 0 O
19.542 6445 3636 5626 .834 90 N2 181 585 010 02 1802 1639 1755 0 1.0
19.521 6431 3641 S613 834 90 115 134 605 0.10 02 1300 1637 1843 0 20
19.429 637.1 3662 5556 .8333 9838 13.1 198 6.7 010 02 1801 1630 1923 0 3.0
18994 6222 3678 S41.4 .830 974 217 265 1000 0.10 500 1795 1597 1810 O 4.0
18951 628 3666 5419 .830 97.1 211 261 1000 O.10 S0.0 1825 1599 1832 0 5.0
18947 629 3665 S420 .830 97.1 2.1 261 1000 0.10 500 1785 1599 1836 O 6.0
19.536 6404 3661 5588 .333 989 11.8 186 688 0.10 02 1820 1636 17.10 1 O.
19534 6408 3658 559.1 833 989 11.8 186 676 0.10 02 1814 1636 1757 1 10
19.513 6389 3666 5573 .833 989 125 193 709 010 02 1813 1633 1845 1 20
19412 6319 3693 5507 .8332 985 139 20§ 87.1 010 02 1812 1626 1924 1 30
18992 6223 3678 S414 830 974 216 264 1000 0.10 500 1847 1597 1813 1 40
18951 6228 3666 5419 .830 971 212 261 1000 0.10 500 1797 1599 1833 1 50
18946 629 3665 5420 .830 971 211 261 1000 0.0 500 1821 1599 1837 1 6.0
19520 6388 3668 S557.2 .833 988 124 191 71.8 010 02 1850 1633 1697 2 O
19.518 639.1 3666 5575 .8333 988 122 190 709 010 02 1852 1634 1754 2 10
19.497 6377 3671 5562 .8333 988 124 191 7383 010 02 1854 1633 1842 2 20
19.400 631.1 3696 5499 .832 985 141 207 89.1 010 02 1852 1626 192 2 30
1898 620 3678 S41.1 830 974 217 265 1000 0.10 S00 1849 1597 1811 2 4.0
18944 626 3666 S41.7 830 97.1 212 261 1000 0.10 500 1851 1598 1834 2 50
18940 6226 3665 54183 .8330 97.1 211 261 1000 0.10 S00 1848 1599 1836 2 6.0
19.433 6327 3692 5514 .832 986 133 200 846 010 0.2 1918 1629 1728 3 O
19.429 6322 3694 5509 .832 986 136 203 856 010 02 19.19 1628 1758 3 1.0
19.411 6314 3696 5502 .832 985 136 203 879 010 02 19.17 1628 1848 3 20
19330 6270 37.10 5460 .831 983 149 213 9.1 010 02 1920 1622 1924 3 3.0
18947 6206 3680 539.8 .830 975 222 268 100.0 0.10 500 19.20 15.9§ 18.10 3 4.0
18904 6212 36.68 5404 830 97.1 216 264 1000 0.10 S0.0 1920 1597 1833 3 5.0
18.899 6213 3666 5405 .8330 971 215 264 1000 0.10 S00 1920 1597 1835 3 6.0
19.127 6200 37.18 5394 830 985 161 224 1000 0.10 05 19.82 1617 1654 4 0
19.124 620.1 37.17 5395 .830 985 159 222 1000 0.10 0.2 19.82 1618 1752 4 1.0
19.115 6199 37.17 5393 830 984 160 222 1000 0.10 0.2 1982 1618 1860 4 20
19069 6187 37.16 5382 .829 984 165 227 1000 010 02 1981 1616 1926 4 3.0
18736 6138 3685 5333 828 976 243 282 1000 0.10 S0.0 19.82 1588 18.05 4 4.0
18.689 6143 3673 5339 .828 973 237 279 100.0 0.10 S0.0 19.82 1590 1830 4 5.0
18.685 6143 3671 5339 .828 973 237 278 1000 0.10 S00 19.81 1590 1832 4 60
18387 5983 37.23 5188 .825 986 263 295 1000 0.10 S0.0 2037 1580 1680 S O
18297 597.8 37.09 5183 .825 982 206 257 1000 0.10 02 2038 16.01 18.19 § 1.0
18293 5977 37.09 5182 .825 982 207 258 100.0 0.10 02 2037 1600 1843 5 20
18269 597.2 37.08 5176 .825 98.2 212 261 1000 0.0 02 2036 1598 1925 S 3.0
18.080 5937 3695 5142 824 979 262 294 1000 0.10 218 2038 1581 1849 S5 4.0
17980 5946 36.68 5151 .824 97.1 294 314 1000 0.10 499 2038 1570 1821 S 5.0
17974 5946 3666 5151 .824 .97.1 294 314 1000 0.10 S00 2038 1570 1824 S 6.0
17427 5833 3635 5044 822 963 231 274 1000 014 02 2060 1592 17.10 6 O.
17427 5831 3636 S042 822 963 231 275 1000 0.14 02 2060 1592 1756 6 1.0
17424 583.1 3635 5042 .822 9.3 231 274 1000 0.14 02 2060 1592 1840 6 2.0
17.408 581.8 3641 5029 .822 964 240 280 1000 0.13 02 2060 1588 1934 6 3.0
17.252 5794 3627 5005 .821 96.1 30.1 318 1000 0.13 31.0 2060 1567 1818 6 4.0
17.155 5794 3606 S00.6 .82) 955 325 331 1000 0.13 499 2060 1558 1815 & 5.0
17.150 5794 3605 5006 .821 955 324 331 1000 0.13 496 2060 1558 18.19 6 6.0
17226 5848 3581 5059 .822 949 228 272 1000 019 02 2060 1593 17.11 7 o
17225 5845 3583 5056 .822 949 229 273 1000 0.8 02 12060 1593 1826 7 1.0
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log log log log log
eff Ve Je Vmp 1 G wax L XX Xy X» Do Ds DL S S
17.222 5847 3582 5057 .822 949 230 274 1000 0.18 02 2060 1592 1843 7 20
17205 S84.2 3581 5053 .822 949 235 277 1000 018 02 2060 1590 1926 7 3.0
17.008 5805 35.67 S501.6 .821 945 328 333 1000 0.17 499 2060 1557 1784 7 40
16948 S80.3 3556 5014 .821 942 323 330 1000 0.17 500 2060 1559 1816 7 5.0
16943 SB09 3551 5020 .821 94.0 322 330 1000 0.17 500 2060 1559 1819 7 6.0
17205 S84.8 3577 5059 .822 948 2.7 272 1000 019 G2 2060 1593 17.10 8 O
17204 5849 3576 S06.0 .822 947 227 211 1000 019 02 2060 1593 1832 8 1.0
17202 5843 3580 5054 .822 948 230 274 1000 018 02 2060 1592 1838 8 20
17.184 5845 3575 5056 .822 947 234 276 1000 019 02 2060 1591 1926 8 3.0
16986 580.7 35.6f S01.8 .&21 943 327 333 1000 0.18 500 2060 1557 17.34 8 4.0
16927 5806 3549 5017 821 940 322 30O 1000 017 S00 2060 1559 1816 8 S.0
16921 5810 3545 5022 .821 939 322 330 1000 0.18 500 2060 1560 1819 8 60
.“ P
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Appendix C User’s Manual

This appendix contains a user’s manual for the code used in this work. The
optimization code developed in this work is covered in detail, as is the information
necessary to use the code with SCAP1D. Only those aspects of SCAPID that
were modified in this work are described in detail for the user. Those not familiar
with the inputs to SCAP1D should check JPL publication #85-46 . The number-
ing of sections, figures, and tables in this appendix is independent of the previous
sections.

'DOE/JPL-1012-107, AR. Mokashi, T. Daud, and RM. Kachare, "High-Efficiency Silicon
Solar Cell Design Evaluation and Sensitivity Analysis"
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C.1 Problem Definition

The code described in this manual is a nonlinear optimization code which was
developed for the application of optimizing an output of a computer simulation
with respect to the inputs. The computer simulation is a user supplied program
which models a physical phenomenon or device. For example, the optimization
code has been coupled with a one dimensional model of a silicon solar cell to
optimize cell design. The code is not completely general in terms of constraints, as
it is not anticipated that the inputs to a model will be heavily constrained.

The code is particularly effective for applications where the number of deci-
sion variables (dimension of x) is small and the objective function, f, is difficult to
calculate (i.e., requires a nontrivial amount of CPU time). The code operates very
reliably when using numerical approximations to the gradient (which must be used
when optimizing a simulation). The code may also be used for optimizations in
which a closed form expression for the objective and/or the gradient exist.

The code solves the following problem*:

minimize f(x)

X

Ib £ x £ ub

Ax<b
x is an n dimensional vector of variables over which the function f will be

minimized,
X = [ X1s X2y +oes Xp ]

The vector b represents the lower bounds for each of the components of x,

tScalar quantities are represented by non-bold type (e.g., Ql), vectors by lower case bold type
(e.g., X), a particular component of a vector by the vector symbol in normal type and a sub-
script denoting the component (e.g., X} = first component of vector X), a sequence of vectors
by x°, x!, ..., and matrices by upper case bold type (e.g., H).
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Ib = [ 1by, Iby, ..., 1b, ]
The vector ub represents the upper bounds for each of the components of x,
ub = [ ub,;, ub,, ..., ub, ]

Any, or all, of the components of the vectors Ib or ub may be undefined (i.e., there
need not be upper and/or lower bounds on the components of x).

The matrix A and the right hand side vector b are used to enforce linear ine-
quality constraints involving the decision vector, X. The code was not designed to
handle large numbers of linear inequality constraints. Other methods may be
coded that will solve optimization problems with large numbers of linear con-
straints more efficiently. Linear equality constraints should not be included in the
problem. It is more efficient to eliminate linear equalities (see examples), which
reduces the dimension of the problem. The code does not include logic to deter-
mine a feasible solution when starting from an infeasible starting point. Therefore,
the user must be able to provide an initial estimate of the optimal solution which is
feasible (satisfies all the constraints). The code is not designed to solve problems
that include nonlinear constraints.

A maximization is simply a minimization of the negative of the objective
function (e.g., maximize f(x) is equivalent to minimize -f(x) ).

It is up to the user to provide subroutines to calculate the objective function
(f), the gradient of the objective function with respect to the decision variables
(optional), and a routine to initialize the problem (may not be necessary).

Another special adaptation of the code for use with computer simulations is
the implementation of a two level optimization structure (see section C.5 for
details).

The objective function is assumed to be reasonably smooth (e.g., continuous)
and differentiable. The optimization code can only solve for a local minimum,
which may or may not be the global minimum. Given certain conditions on the
objective function (pseudo-convexity) a local minimum is a global minimum.
However, such conditions are usually very difficult to establish for a general objec-
tive function. No techniques exist that can guarantee finding the global minimum
of a general nonlinear objective function.
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C.2 Method of Solution

Figure C.1 shows an overview of the algorithm used. The n-dimensional
problem is solved by solving a series of one dimensional subproblems. The gra-
dient is used to determine a favorable direction of search and then a one-
dimensional optimization is carried out along that direction. The code iterates until
one of the user specified convergence criteria is satisfied, at which point the n-
dimensional problem is considered solved. The basic components of the algorithm
are 1) initialization, 2) the calculation of the gradient, 3) definition of the search
direction, 4) enforcing the constraints, 5) solution of the one dimensional subprob-
lem, and 6) test for convergence. The paragraphs below describe each of these

components in more detail and outline the steps of the algorithm.
(1) Set k=0, given x* calculate £ = f(xX).

The user must supply the initial estimate of the optimal value of the decision
vector (x%). The user also supplies the subroutine which, given the value x¥,
calculates the value of the objective function = f(x¥) ). The user may sup-
ply a subroutine to accomplish any activities that are unique to the problem
being solved that should be done before the objective function can be
evaluated (e.g., reading in data required for the objective function, echoing the

input data file, etc.)
(2) Calculate g& = Vf(x¥).

The user may supply closed form expressions for any or all of the com-
ponents of the gradient in a subroutine. If it is not possible to derive the
expressions for any component of the gradient, that component will be
approximated numerically by the code.

3) If k=0, then d® = -0%. Else, calculate the search direction using either:
(3a) Fletcher-Reeves conjugate gradient algorithmT
t
d< = —g& + Bk gk-! B = g g
gh-1t gkl
(3b) quasi-Newton algorithm
dc=-HX gt Where HE is calculated by one of the formulas below.

t yyk-1 t t 1yk-1 k-1 t
Hk=Hk-1+[l+‘tH ‘1] 5? _[57H ':'H 77] BFGS
Sty Y'Y

tg is a nx1 vector, whereas gt denotes the transpose or a 1xn vector. Hence gl g is an inner
product (the result of which is a scalar quantity).
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Calculate the objective associated with the initial values of

decision variables (x¥, k=0)

Calculate the numerical approximation of the gradient (g¥) at xX.

|

Update Hessian approximation and calculate the search direction.
d® = H* g* (assumes quasi-Newton method in use)

l

Enforce the constraints to insure feasibility.

Solve the one dimensional subproblem:
minimize f( x* + @ d¥) .
0sasay,

Set x¥t!l=xk4q'dk

l YES

n-dimensional problem converged? ——> DONE

Figure C.1 Overview of Optimization Algorithm
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4

&)

©

58  Hi vy He
1Y Y He, ¥

HX = (1-0) H + o0 Hos Broyden
where & =xX-x¥! and y=gt-gt!

Hk = Hx! + DFP

The user may use any of the above formulas to calculate the search direction.
The quasi-Newton methods use the quasi-Newton condition to develop an
approximation of the inverse Hessian (the matrix of second partial derivatives)
of the objective function. Several different formulas (DFP, BFGS, Broyden)
for updating the inverse Hessian approximation are in the code. Quasi-
Newton methods can be proven to converge to the optimal solution of a qua-
dratic function in n (where n is the dimension of the problem) iterations if
exact line searches are implemented. Since most functions can be approxi-
mated locally by a quadratic function, these methods exhibit good conver-
gence properties on general functions (superior to always moving in the direc-
tion of steepest descent d* = -g¥).

Enforce the constraints to insure the direction dX is a feasible direction, and
calculate the maximum step size op,, (may be infinite) along the search
direction for which the decision variables remain feasible (constraints are
satisfied).

Solve the one dimensional subproblem.
minimize f( xX + o d¥ ) .
0<a<a,,

The n-dimensional optimization is solved by iteratively solving the one
dimensional subproblem. The one dimensional algorithm in the code uses
successive polynomial approximations based on the information known about
the function along the line (directional derivative and function values). As
implemented in the code, the one dimensional minimization is an inexact
algorithm. No attempt is made to solve the one dimensional problem to an €
tolerance (i.e., to within € tolerance of the true optimal value of @), as this is
not necessary to solve the n-dimensional problem. The one dimensional
minimization is an iterative procedure, and the user defines the values of the
convergence criterion.

Test for convergence of the n-dimensional problem. Tests are based on the
magnitude of the gradient, the magnitude of the change in the objective func-
tion, and the magnitude of the change in the vector x.
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(6a) If |g&| < EPGRAD ', done.

(6b) If |f& - f&!| < EPFUN for NSTOP consecutive iterations, done.
(6¢c) If |xX - x}!| < EPX i=1,n for NSTOP consecutive iterations, done.
(6d) If none of the above holds increment iteration counter, k=k+1.

(6e) If k > ITMAX, limit on iterations reached, halt execution.

(6f) Else, return to step 2 for another iteration.

The result of the program is a sequence of vectors x’, x!, ..., x* which
approaches a local minimum x’ and a sequence of function values 0 f, .,
which approaches the value of the objective function at the local minimum,

" = f(x").

! Capitalized variables refer to program inputs, which are described in the next section.
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C.3 Description of Inputs

The inputs to the code are described below in the order that they appear in the
input file. Where appropriate, a value is suggested for each input. Several input
options are provided to tailor the code for the more specialized purpose of optimiz-
ing the output of a simulation program with respect to the inputs.

NDIM

INTLIM

KFAIL

BIGSTP

The dimension of the problem, which is the dimension of the decision
vector X = [Xl, X2,y .. ’xNDlM]'

Always set equal to one (unless using two level optimization).

Print flag for the main iteration loop of the code (suggested value is 1).
No output from the main iteration loop of the code. Useful only for
two level optimization when no output is desired from the inner loop.

Only the initial and final points of the optimization are output along
with a summary of the run statistics (e.g., # of iterations, # of func-
tion calls, etc.)

Information is output at each iteration (e.g., x¥, g&, X, etc.)
Highest level of output, details the optimization run.

Output flag for the one dimensional subproblem. Note, the one dimen-
sional problem is solved at each main loop iteration (k=0,1,2,...). (sug-
gested value is 0).

No output from the one dimensional subproblem.

Summary of the one dimensional subproblem including # of function
evaluations, best step size, etc.

Output each step size and associated function value made along the
line of search.

# (2 0) of successful polynomial interpolations before the one dimen-
sional subproblem is considered to have converged (suggested value =
2).

# (2 0) of unsuccessful polynomial interpolations before the one dimen-

sional subproblem is considered to have converged (suggested value =
1).

Specialized input useful when optimization code is used with numerical
simulations. BIGSTP should represent a significant change in the mag-
nitude of the decision vector (Jx|). Not a critical input for less special-
ized use, but should be interpreted in the same manner (suggested value
is 1.0).
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NPROB Input used for user documentation purposes to label different problems.

[FORM Flag which denotes the method used to calculate the search direction
(suggested value is 1, unless value of NDIM is so large that array
storage is a problem, in which case conjugate gradient algorithm should
be used because it requires less storage).

=1 Quasi-Newton method will be used.
=2 Self-scaling quasi-Newton method will be used.
=3 Conjugate gradient method will be used.

FORMLA If quasi-Newton calculation of the search direction is chosen (IFORM
=1 or 2), this input determines which formula will be used to update the
approximation of the inverse Hessian (suggested value is 1.0).

=0.0 Davidon-Fletcher-Powell (DFP)
=1.0 Broyden-Fletcher-Goldfarb-Shanno (BFGS)

=Q Any other value results in the appropriate Broyden family member,
which is a linear combination of the DFP and BFGS formulas.

IBOND Flag denotes whether any of the decision variables has upper or lower
bounds (=1 there are bounds, =0 no bounds).

ICONST Flag which denotes whether or not the problem has linear constraints
(=1 there are linear constraints, =0 no linear constraints).

NROWS # of linear constraints (rows in matrix A). Ignored if ICONST = 0.

NCOLS # of components of the decision vector involved in the linear constraints
(columns in matrix A). Ignored if ICONST = 0.

ISCALE Flag to determine if the decision variables are to be prescaled (=0 no
prescaling, =1 prescaled).

ITMAX Maximum # of iterations to be executed. If the code reaches this limit,
it will halt and output the best point to date (suggested value is 100).

IRSTRT Number of times the code should restart the direction finding algorithm
if the convergence is sensed on the change in the magnitude of the
objective function or the decision vector (suggested value is 0). Note, a
positive input should be supplied here only if the user wishes to solve
the problem very accurately and is not particularly concerned with the
number of iterations (computational effort) required.

NSTOP The number of consecutive iterations that a lack of progress in the
objective function (as measured by EPFUN) or the decision vector (as
measured by EPX) before the problem is considered to have converged
(suggested value is 3).

EPGRAD The magnitude of the gradient that will imply convergence. For analyti-
cal expressions of the gradient the suggested value is 10~%. When
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EPFUNC

EPX

ISAVE

IPARSH

closed form expressions for the gradient are not supplied by the user,
the criterion should be considerably tighter, due to the inaccuracies
inherent when numerically approximating the gradient. The suggested
value is 107% and possibly smaller if the objective function is calculated
by a complex simulation (a very small value forces one of the other
convergence criterion to be satisfied).

If the objective value changes by less than EPFUNC (in absolute magni-
tude or percent difference) for NSTOP consecutive iterations the prob-
lem is considered to have converged (if IRSTRT is non-zero this must
occur IRSTRT times). This input depends on the accuracy desired by
the user; 10~ is a reasonable value for most problems.

If each component of the decision vector changes by less than EPX (in
absolute magnitude or percent difference) for NSTOP consecutive itera-
tions, the problem is considered to have converged (if IRSTRT is non-
zero this must occur IRSTRT times). 1079 is a reasonable value for
most problems. But, for use with simulations EPX should be set equal
to OFFDIF, both of which should represent the accuracy desired in the
decision variables.

Flag denotes whether or not it will be necessary to numerically approxi-
mate any components of the gradient.

User has supplied expressions for all the components of the gradient
in the subroutine GRADNT.

User has not supplied expressions for all the components of the gra-
dient in the subroutine GRADNT, so that it will be necessary to
numerically calculate some or all of the components of the gradient.

Option that is best suited for use when the objective function is calcu-
lated by a simulation and/or requires considerable computational effort.
For standard use suggested value is 0 .

Follows standard methods of calculating the gradient.

Attempts to save one objective evaluation when calculating the
numerical gradient by making use of information along the line of
search.

Percentage offset for the numerical approximation of the derivative. For
standard use, the suggested value is 0.0001. For more complex objec-
tive functions (outputs of simulation), the value must reflect the accu-
racy that can be attained in the decision variables, generally 0.001
(0.1%) or less.

Used only if INUM # 1. N vector of inputs that represents the manner
in which each component of the gradient should be calculated. A value
is entered for each of the NDIM components. Suggested values are 1 if
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LB

UB

XSCALE

ICOL

AMAT

BRHS

an analytic expression is available for the particular component, or 2 if
no analytic expression is supplied. Forward differences (2) converts to
modified central differences if the algorithm gets stuck (line search in
the direction of steepest descent does not improve the objective func-
tion), so that the use of forward differences is very reliable.

Use expression in subroutine GRADNT.

Use the forward difference formula.

Use the modified central difference formula.

Use central difference, but take second function evaluation only if
first offset does not improve the objective value.

Use forward differences until a lack of progress is sensed in either the
objective function or decision variables then switches to central
differences.
N vector used to read in the initial estimate of the solution.
Ignored if IBOND = 0. Else, an NDIM vector used to denote if upper
and/or lower bounds are in use for each component of the decision vec-
tor.
Only lower bound is in use.
Only upper bound is in use.
Upper bound and lower bound are in use.
Variable is free, no upper or lower bounds.
Variable is fixed. The value of the variable will not be changed by
the optimization (e.g., the variable will not take part in the optimiza-
tion).
Ignored unless IBOND = 1 and IBOUND(i) = 1 or 3. N vector which
contains the lower bound for each of the decision variables.
Ignored unless IBOND = 1 and IBOUND() = 2 or 3. N vector which
contains the upper bound for each of the decision variables.
Ignored if ISCALE = 0. N vector which represents prescaling to be
done on each variable.

Ignored if ICONST = 0. Else, a NCOLS vector that denotes which
components of the decision vector that are involved in the linear con-
straints.

Ignored if ICONST = 0. Else, the matrix representing the linear con-
straints entered by row (e.g., see section C.4.2).

Ignored if ICONST = 0. The NROWS vector representing the right
hand side of the linear constraints.
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ITYPE Ignored if ICONST = 0. Else, an NROWS vector specifying the rela-
tion to be enforced for each linear constraint.

=0 Equality (=) is to be enforced for the linear constraint. Linear equal-
ity constraints should be removed by elimination in order to reduce
the dimensionality of the problem and, hence, the computational effort
required to solve the problem (e.g., see sections C.4.3 and C.4.4).
Also, inclusion of equality constraints may deteriorate the conver-
gence rate of the algorithm.

=1 The linear expression of the variables must be greater than or equal to
(2) the right hand side.
=2 The linear expression of the variables must be less than or equal to

(<) the right hand side.
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C.4 Example Inputs and Outputs

Several examples will be given to illustrate how the user starts from the prob-
lem definition given in the first section of this manual and prepares the files and
subroutines needed to solve the problem using the code. The first three examples
are standard functions, and the required input and resulting output are given. The
last example illustrates how the code is used with a simulation program and
presents some of the major concerns involved.

C.4.1 Example #1
minimize sin( x; + X3 ) + ( X} — X3 P - 1.5x, + 2.5x, + 1.0

X1 X2
-1.5<5x,540
-3.0<x, 3.0

The problem to be solved is mathematically described above. The problem is
initiated from the point x = [0, 0]. The input file for this problem is shown in
figure C.2, which is supplied with the manual as the file inex1.d. The input file is
read using list directed read statements (format=*). Associated with each read
statement in the program is a comment line which describes the input that should
be entered. The comment line and at least one input line must appear, even though
some of the data is optional. As many lines as are required can be used if the data
is to be read (i.e., more than one line may be required to enter the initial point),
but exactly one line must be skipped after the comment line if the option is not in
use (i.e., the data is to be ignored). Upper and lower bounds are used (IBOND =
1), so that the data required to read in the bound information (IBOUND, LB, and
UB) appears following the comment lines. Since scaling is not used (ISCALE = 0)
and there are no linear constraints ICONST = 0), no input need appear after the
associated comment lines, but one line must be skipped. The comment lines
clearly display the organization of the data file so that the user can alter existing
data files without having to refer back to a manual.

Figure C.3 shows the user supplied subroutines. Code that is written by the
user for the particular problem to be solved is shown in bold type. The remainder
of the subroutines are standardized and should always appear as shown in figure
C.3. In this example, the user supplied initialization routine, INITLZ, is used to
write the input file to the output file (this helps document the problem). The code
shown in figure C.3 is supplied with the manual in the module ex1.f. The module
ex1.f includes two other short routines (described later in this manual) and addi-
tional comment lines to explain the variables that are passed into the routines.
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The output of the program is shown in figure C.4. Figure C.4 may be used
with the module ex1.f and the input file inex1.d to verify correct installation of the
code. The convergence criterion on the magnitude of the gradient was reached
after § iterations (e.g., k=4 in section C.2). If linear constraints are included, this
is referred to as a K-T (Kuhn-Tucker) point. Only the magnitude of the gradient
that corresponds to a feasible direction need be less than the input EPGRAD (e.g.,
see figure C.7). Sixteen objective evaluations and 6 evaluations of the gradient
were required for convergence to the point [-0.5471978, -1.547197], which has an
objective function equal to -1.913223. The inverse Hessian is by definition a sym-
metric matrix and is therefore stored as a lower triangular matrix to conserve
storage.

The variables in the calling list of INITLZ are defined below.
NDIM = dimension of the problem
[IN = device number for the input file
IOUT = device number of the output file
IOUT?2 and IPR2 are not used in this version of the program
[PRINT = flag for print level of n-dimensional optimization

The subroutine FUNCTN is called to calculate the objective function. The
variables in the calling list of FUNCTN are defined below.
N = problem dimension
X = n vector containing current values of the decision variables
F = value of objective function (output)
ITER = iteration of the n-dimensional subroutine
IGRAD = component of gradient being solved for (if INUM=2), or O if in a line
search.
SDIREC = n vector containing the current search direction (if IGRAD =0)
NPROB = problem number
IOUT = device number of output file
[PRINT = flag for print level of n-dimensional optimization

The subroutine GRADNT is called to calculate the gradient. The variables in
the calling list of GRADNT are defined below.
N = problem dimension
X = n vector containing current values of the decision variables
G = value of gradient (output)
ITER = iteration of the n-dimensional subroutine
NPROB = problem number
IGRAD = component of gradient being solved for (if INUM=2).

All of the above definitions are included in their respective routines as com-
ments (i.e., in ex1.f), but were not printed in the examples to save space.
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NDIM ILOOP IPRINT IPR

2 1 1 0
INTLIM KFAIL BIGSTP NPROB
2 1 1.0 1
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 10 1 0 1 1 0
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3 0.1E-03  0.1E-03 0.1E-05
INUM ISAVE OFFDIF
1 1 0.0001
IPARSH(NDIM) 1=ANALYTIC 2=FORWARD 3=CENTRAL 4=CENTRAL! 5=AUTO F/C
(not in use)
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
0.0 0.0

IBOUND(NDIM) 1=LB ACTIVE 2-UB ACTIVE 3=BOTH ACTIVE 4=FREE 5=FIXED
33
XLB(NDIM) LOWER BOUNDS

-15 -30
XUB(NDIM) UPPER BOUNDS

40 3.0
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
(not in use)

ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
(not in use)

AMAT(NROWS,NCOL) LINEAR CONSTRAINT MATRIX

(not in use)

BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS

(oot in use)

ITYPE(NROWS) O=(EQUALITY) 12(2) 2=(5)

(not in use)

figure C.2 The file inexl.d
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C“..‘

C  USER SUPPLIED SUBROUTINE TO INITIALIZE THE PROBLEM.
C

SUBROUTINE INITLZ(NDIM,IIN,IOUT,IOUT2,IPR2,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

CHARACTER*80 IDUM
C ECHO THE DATA FILE
REWIND IIN
DO 5 1=1,1000
READ(IIN,10,END=20) [DUM
WRITE(IOUT,10) IDUM
10 FORMAT(A80)
S CONTINUE
C
C DONE WRITING INPUT FILE TO OUTPUT, REALIGN INPUT FILE.
20 CONTINUE
REWIND IIN
READ(IN,*)
READ(IIN,*)
RETURN
END

Ct““
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE FUNCTION.
C

SUBROUTINE FUNCTN(N,X,F,ITER,IGRAD,SDIREC,NPROB,

1 IOUT,IPRINT)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N),SDIREC(N)

X1 = X(1)

X2 = X{2)

F = DSIN(X1+X2) + (X1-X2)**2 - 1.5D0*X1 + 2.5*X2 +1.D0
RETURN

END

C‘ 58S
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE GRADIENT
C

SUBROUTINE GRADNT(N,X,G,ITER,NPROB,IGRAD)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N),G(N)

X1 = X(1)

X2 = X(2)

G(1) = DCOS(X1+X2) + 2.D0*(X1-X2) - 1.5D0
G(2) = DCOS(X1+X2) - 2.D0*(X1-X2) + 2.5D0
RETURN

END

figure C.3 Part of the module ex1.f

260




NDIM ILOOP IPRINT IPR

2 1 1 0
INTLIM KFAIL BIGSTP NPROB
2 1 1.0 1
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 0 1 1 0
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3 0.lE03 0.1E-03 0.1E-05
INUM ISAVE OFFDIF
1 1 0.0001
IPARSH(NDIM) 1=ANALYTIC 2=FORWARD 3=CENTRAL 4=CENTRAL! 5=AUTO F/C
(not in use)
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
0.0 00

IBOUND(NDIM) 1=LB ACTIVE 2=UB ACTIVE 3«BOTH ACTIVE 4=FREE S«FIXED
33
XLB(NDIM) LOWER BOUNDS

-1.5 -3.0
XUB(NDIM) UPPER BOUNDS

40 130
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
(not in use)

ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
(oot in use)
AMAT(NROWSNCOL) LINEAR CONSTRAINT MATRIX
(not in use)
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
(not in use) .
ITYPE(NROWS) O=(EQUALITY) 1=(2) 2=(%)
(oot in use)

PROBLEM # 1

EXECUTING THE BROYDEN FAMILY MEMBER

0.00E+00 DFP + 10 BFGS

BEGIN [TERATION ¢ 0

THE OBJ =  1.000000000

THE POINT IS =

0.00000000000E+00 0.00000000000E +00

ISTOP= 1 CONVERGENCE ON MAGNITUDE OF DERIVATIVE SATISFIED. MAG< 0.1000000E-03

PROBLEM SUMMARY
# ITERATIONS = § #OBJEVALS = 16 #GRADEVALS= 6
# OF RESETS = 0 #FAILED INTRPS= 0
THE MINIMUM OBJECTIVE = -1913223
THE OPTIMAL POINT IS =
05471978 -1.541197

THE MAGNITUDE OF THE GRADIENT AT THE MIN = 0.12602113E-05
THE GRADIENT AT MIN =
0.92481E-06  0.85607E-06
THE UPDATED ( 4) HESSIAN INVERSE (LOW TRIANG)

0.41309  0.16483 041345

ALL PROBLEMS HAVE BEEN COMPLETED

figure C.4 Output using ex1.f and inex1.d
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C.4.2 Example #2

minimize X; — Xy — X3 = X; X3 + X; X4 + X9 X3 — X X4
b ¢4

-x;—-2xy 2 -8.0
-4x;-x, 2 -12.0
-3x;—-4xy 2 -12.0
-2x3-x4 2 -8.0
-x3—-2x4 2 -8.0
-X3—-Xx4 2 =50

0<x 2 i=l,.4

The problem to be solved is mathematically described above. The problem is
initiated from the point x = [0, 0, 0, 0]. The input file for this problem is shown in
figure C.5, which is supplied with the manual as the file inex2.d. This example
shows how linear constraints are input to the problem. The flag ICONST = 1 and
the appropriate inputs are given for NCOL, NROWS, ICOL, AMAT, BRHS, and
ITYPE. Any variables that are involved in the linear inequality constraints must
have upper and lower bounds. If such bounds do not appear naturally in the for-
mulation of the problem, then extremely loose bounds which will not affect the
optimization should be specified for the variables.

Figure C.6 shows the user supplied subroutines. Code that is written by the
user for the particular problem to be solved is shown in bold type. The remainder
of the subroutines are standardized and should always appear as shown in figure
C.6. The code shown in figure C.6 is supplied with the manual in the module
ex2.f. The module exl.f includes two other short routines (described later in this
manual) and additional comment lines to explain the variables that are passed into
the routines. In this example, the data file is not written out to the output.
Although nothing is accomplished in the user supplied routine INITLZ it must still
be included when linking the programs. The subroutine FUNCTN is called to cal-
culate the objective function. The subroutine GRADNT is called to calculate the
gradient. The output of the program is shown in figure C.7. Figure C.7 may be
used with the module ex2.f and the input file inex2.d to verify correct installation
of the code.
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NDIM ILOOP IPRINT IPR

4 1 1 0
INTLIM KFAIL BIGSTP NPROB
2 1 1.0 2
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 1 6 4 0
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3 0.1E-03  0.1E-03 0.1E-05
INUM ISAVE OFFDIF
1 1 0.0001
IPARSH(NDIM) 1=ANALYTIC 2=FORWARD 3=CENTRAL 4=CENTRALI1 5=AUTO F/C
(not in use)
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
0.0 0.0 00 0.0

IBOUND(NDIM) 1=LB ACTIVE 2=UB ACTIVE 3=BOTH ACTIVE 4aFREE S5=FIXED
3333 )
XLB(NDIM) LOWER BOUNDS

00 00 00 00
XUB(NDIM) UPPER BOUNDS

200 20.0 200 200
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
(not in use)
ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
12 34
AMAT(NROWS,NCOL) LINEAR CONSTRAINT MATRIX
-1 200
4 -1 00
3 4 00

0 0-2-1

0 0-1 -2

0 0-1-1

BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
-80 -120 -120 -80 -8.0 -5.0

ITYPE(NROWS) 0=(EQUALITY) 1=(2) 2=(%)

111111

figure C.5 The file inex2.d
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C““*
C  USER SUPPLIED SUBROUTINE TO INITIALIZE THE PROBLEM.
C
SUBROUTINE INITLZ(NDIM,IIN,IOUT,IOUT2,IPR2,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

RETURN
END
C##ttt
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE FUNCTION.
C
SUBROUTINE FUNCTN(N,X,F,ITER,IGRAD,SDIREC,NPROB,
1 IOUT,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N),SDIREC(N)
C
F = X(1) - X(2) - X(3) -X(1)*X(3) + X(1)*X(4) + X(2)*X(3) - X(2)*X(4)
RETURN
END
C‘t’t**
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE GRADIENT
C
SUBROUTINE GRADNT(N,X,G,ITER,NPROB,IGRAD)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N),G(N)

G(1)= 1-X@3)+ X4
GQ2) =-1+X@3)-X@4
G(3) =-1-X(1) + X(2)
G@) = X(1) - X(2)
RETURN

END

figure C.6 Part of the module ex2.f
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PROBLEM # 2

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBJ = 0.0000000000E+00

THE POINT IS =

0.00000000000E+00 0.00000000000E+00 0.00000000000E+00 0.00000000000E+00

ISTOP= ! K-T POINT, IKT=2

PROBLEM SUMMARY

# ITERATIONS= S5 #OBJEVALS = 13 #GRADEVALS= 6
# OF RESETS = 4 # FAILED INTRPS= 0
THE MINIMUM OBJECTIVE = -15.00000
THE OPTIMAL POINT IS =
0.0000000E+00 3.000000  0.0000000E+00 4.000000
THE MAGNITUDE OF THE GRADIENT AT THE MIN = 79372539
THE GRADIENT AT MIN =
5.0000 -5.0000 2.0000 -3.0000
THE UPDATED ( 0) HESSIAN INVERSE (LOW TRIANG)
1.0000 0.00000E+00 0.00000E+00  0.00000E+00  1.0000 0.00000E +00
0.00000E+00  1.0000 0.00000E+00  1.0000
ALL PROBLEMS HAVE BEEN COMPLETED

figure C.7 Output using ex2.f and inex2.d
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C.4.3 Example #3

minimizc(xl—l)2+(x2—x3)2+(x4—x5)2
X

X+ Xy +X3+ X4 +x5 5= 0
Xx3—2(x4+x5)+3=0

The problem to be solved is mathematically described above. The problem is
initiated from the point x = [3, §, -3, 2, -2] The linear equality constraints can be
used to eliminate two of the variables from the problem. In this example, x; and
x3 may be eliminated by the equations:

X]==Xy=X3—X4—Xs+35
Xx3=2(x4+x5)-3
Eliminating x; from the equation for x; gives:
X ==X3-3x4-3x5+ 8

The expressions for x; and x5 are then substituted into the objective function. The
resulting problem is:

minimize (—x2 — 3 x4 = 3 xs + 7)2 + (x2 =2 x4 =2 x5 + 3)? + (x4 - x5)?
X2XoXs

This results in an unconstrained problem in three dimensions, which is much easier
to solve. The input file for this formulation is shown in figure C.8, which is sup-
plied with the manual as the file inex3.d . It is important to note that in the input
data file x, corresponds to X, x, corresponds to X4, and x; corresponds to X5 in the
problem statement given above. It is up to the user to go back and determine the
values of the original variables x, and x3, which were eliminated from the prob-
lem. The user supplied subroutines are shown in figure C.9. The code shown in
figure C.9 is supplied with the manual in the module ex3.f. The module exl.f
includes two other short routines (described later in this manual) and additional
comment lines to explain the variables that are passed into the routines. Because
there are no constraints in the new formulation, IBOND = 0 and ICONST = 0. It
should be noted that IBOND = O is the same as IBOND = 1 and IBOUND = 4 for
each component, but the latter requires more storage and a slight increase in execu-
tion time (both of which may be important if the dimension of the problem is very
large). Since the linear constraints and bounds are not in use anything can be on
the lines associated with IBOUND, XLB, XUB, ICOL, AMAT, BRHS, and
ITYPE, as those lines are skipped. The values associated with the previous exam-
ple were left in to illustrate this. But, there can be only one line after the comment
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lines. For example, had all the data lines associated with AMAT from the previous
problem been left in, the code would have flagged an /O error. The output for
this problem is shown in figure C.10. Figure C.10 may be used with the module
ex3.f and the input file inex3.d to verify correct installation of the code.
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NDIM ILOOP IPRINT IPR

3 1 1 0
INTLIM KFAIL BIGSTP NPROB
2 1 1.0 3
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 0 0 1 1 0
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3 0.1E-03 0.1E-03 0.1E-05
INUM ISAVE OFFDIF
1 0 0.001
IPARSH(NDIM) 1=ANALYTIC 2=FORWARD 3«CENTRAL 4=CENTRAL! 5=AUTO F/C
(not in use)
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
50 20 -20

IBOUND(NDIM) 1=LB ACTIVE 22UB ACTIVE 3=BOTH ACTIVE 4=FREE 5=FIXED
1111
XLB(NDIM) LOWER BOUNDS
00 0.0 00 0.0
XUB(NDIM) UPPER BOUNDS
00 00 00 000
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
(not in use)
ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
12 34
AMAT(NROWS,NCOL) LINEAR CONSTRAINT MATRIX
-1 2 00
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
-8.0 -12.0 -12.0 -8.0 -80 -5.0
ITYPE(NROWS) O=(EQUALITY) 1=(2) 2=(5)
1 11111

figure C.8 The file inex3.d
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C..“.
C  USER SUPPLIED SUBROUTINE TO INITIALIZE THE PROBLEM.
o
SUBROUTINE INITLZ(NDIM,IIN,IOUT,JOUT2,IPR2,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

RETURN

END
C“‘ﬁ‘
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE FUNCTION.
C

SUBROUTINE FUNCTN(N,X.F,ITER,IGRAD,SDIREC,NPROB,

1 IOUT,IPRINT)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION X(N),SDIREC(N)

C
P1 = -X(1) - 3*X(2) -3*X(3) + 7
P2 = X(1) - 2*°X(2) -2*X(3) + 3
F = P1**2 + P2**2 + ( X(2) - X(3) )**2
RETURN
END
C““.

C  USER SUPPLIED SUBROUTINE TO EVALUATE THE GRADIENT
C :

SUBROUTINE GRADNT(N,X,G,ITER,NPROB,IGRAD)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N),G(N)

P1 = -X(1) - 3*X(2) -3*X(3) + 7

P2 = X(1) - 2*X(2) -2*X(3) + 3

G(1) = -2°P1 + 2*P2

G(2) = -6"P1-4*P2 + 2*(X(2) - X(3))
G(3) = -6*P1-4*P2 - 2*( X(2) - X(3))
RETURN

END

figure C.9 Part of the module ex3.f
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PROBLEM # 3

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBJ =  84.00000000

THE POINT IS =

5.0000000000 2.0000000000 -2.0000000000

ISTOP= 1 CONVERGENCE ON MAGNITUDE OF DERIVATIVE SATISFIED. MAG< 0.1000000E-03

PROBLEM SUMMARY

# ITERATIONS = 6 #OBJEVALS = 19 #GRADEVALS= 7
# OF RESETS = 0 # FAILED INTRPS= 3
THE MINIMUM OBIJECTIVE = 0.2898624E-21
THE OPTIMAL POINT IS =
1.0000000 1.000000 1.0000000
THE MAGNITUDE OF THE GRADIENT AT THE MIN = 0.48439666E-10
THE GRADIENT AT MIN =
-0.10283E-10  0.37774E-10 -0.28527E-10
THE UPDATED ( 5) HESSIAN INVERSE (LOW TRIANG)
0.26000 -0.10000E-01 -0.99997E-02 0.13500 -0.11500 0.13500

ALL PROBLEMS HAVE BEEN COMPLETED

figure C.10 Output using ex3.f and inex3.d
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C.44 Example #4

This example illustrates the use of the algorithm to optimize an output of a
simulation with respect to the inputs. An example formulation is as follows.
Assume a simulation, SIMLAT, has been written by the user to predict the
efficiency of a solar cell (note this is for illustrative purposes only, no such code is
supplied with this manual). The objective is to maximize the efficiency of the
solar with respect to six inputs to the simulation.

maximize efficiency (x;, X9, X3, X4, Xs, Xg)
X

Xs+Xg=5

X3 + x4 < 100.5
0<sx;
1Sx3s2
30 S x4<100
1 S xq
2<sx4s4

The initial value for the decision vector, which should be the best available
estimate of the optimal solution, is assumed for illustrative purposes to be [0, 4,
1.5, 50, 2, 3].

The linear equality constraint can be used to eliminate the variable xg from
the problem (e.g., xg¢ = 5-x;). Because of the bounds on the eliminated variable, it
is necessary to redefine the bounds on the variable xs. Resulting in the constraint,

ISX553 .

However, unlike the previous example, there is no way to substitute the expression
x¢ directly into the objective function. Instead, the variable x¢ is entered as a fixed
variable in the optimization (effectively reducing the dimension of the optimization
by one), and the equality for its value is coded into the routine FUNCTN. Since
the objective is a result of a complex simulation, there are no analytical expres-
sions for the gradient, as in the previous examples. Therefore, the gradient is
approximated numerically (INUM = 2) using forward differences (IPARSH = 2 for
each component). Figure C.11 shows the input data file for this problem formula-
tion. The value of EPGRAD should be decreased when numerical gradients are
used. The flag ISAVE is set to one, which may result in saving an objective func-
tion evaluation each time the gradient is calculated.
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Convergence can be slowed if the objective function is particularly insensitive
to one of the decision variables. The prescaling vector XSCALE is provided if
prior to the optimization such knowledge is known (perhaps from previous optimi-
zation runs or the physics of the phenomenon being modeled). For example, if it
is known that the simulation is particularly insensitive to the variable x4 that vari-
able may be prescaled by 10. Interior to the optimization code, the variable x4 is

then treated as the variable %, which has as its bounds 3< % <10. The data file
in figure C.11 shows how prescaling is input to the program. The user only sup-
plies the prescaling vector, but does not transform any of the constraints or bounds
as this is done automatically inside the code. Also, the decision vector is passed to
the user supplied routines as though no scaling had been done (i.e., the scaling is
totally transparent to the user).

The input BIGSTP is used to signify a significant change in the decision vec-
tor. This input is particularly useful if the previous execution of the simulation is
being used to initiate the next solution of the simulation (the objective function).
For example, such a scheme may result in significant savings if the simulation
requires the numerical solution of differential equations using indirect solution pro-
cedures (e.g., Newton’s method, etc.).

The inputs OFFDIF and EPX are set equal to the accuracy desired in the deci-
sion variables. The output of the simulation must be able to dependably reflect the
accuracy desired (e.g., there may be significant roundoff error or nonzero conver-
gence tolerance(s) for iterative algorithms within the simulation). Generally this
will require some experimentation on the part of the user to determine the accuracy
that should be pursued in the optimization.

Figure C.12 shows the user supplied subroutines. It is up to the user to adapt
the simulation (in this case SIMLAT) so that the inputs and output are passed
appropriately. The inputs and output could have been passed to the simulation
using COMMON statements in the routine FUNCTN and the simulation. Consider-
able coding may be required to provide an interface between the simulation and the
optimization code. Almost always, some modifications will have to be made to the
simulation. The routine /NITLZ may be coded by the user to execute any activities
that may be required to initialize the simulation prior to the optimization (e.g.,
reading input data not involved in the optimization, designing a flexible interface
so that the user can choose different outputs as the objective function and/or
different inputs as decision variables in the optimization, etc.)

The device numbers of the optimization input and output files can be easily
changed so that they do not coincide with those used in the simulation program
(see section C.6.2).
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NDIM ILOOP IPRINT IPR

6 1 1 0
INTLIM KFAIL BIGSTP NPROB
2 1 02 3

IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 1 1 2 1
ITMAX [IRSTRT NSTOP EPGRAD EPFUN EPX

100 0 3 0.1E-07 0.1E-03 0.001
INUM ISAVE OFFDIF
2 1 0.001

IPARSH(NDIM) 1sANALYTIC 2=FORWARD 3=CENTRAL 4=CENTRALI1 5=AUTO F/C

222222

X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR

0 4 15 50 23

IBOUND(NDIM) 1=LB ACTIVE 2=UB ACTIVE 3=BOTH ACTIVE 4=FREE 5=FIXED
143335

XLB(NDIM) LOWER BOUNDS
00 0.0 10 300 1.0 00

XUB(NDIM) UPPER BOUNDS
00 00 20 1000 3.0 0.0

XSCALE(NDIM) PRESCALING OF DECISION VARIABLES

1.0 1.0 1.0 1001.0 1.0

ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
3 4

AMAT(NROWS,NCOL) LINEAR CONSTRAINT MATRIX

11

BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS

5.0

ITYPE(NROWS) O=(EQUALITY) 1=(2) 2=(5)

2

figure C.11
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C‘*“*

C USER SUPPLIED SUBROUTINE TO INITIALIZE THE PROBLEM.
C
SUBROUTINE INITLZ(NDIM,IIN,IOUT,IOUT2,IPR2,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
C
C CODING TO INITIALIZE THE OPTIMIZATION
C
RETURN
END
C#“##
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE FUNCTION.
C
SUBROUTINE FUNCTN(N,X,F,ITER,JGRAD,SDIREC,NPROB,
1 IOUT,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N),SDIREC(N)

X{®) = 5.0 x{5)
CALL SIMLAT( X(1), X(2), X(3), X(4), X(5), X(6), OUTPUT)
F = OUTPUT
RETURN
END
C“#t‘ i
C  USER SUPPLIED SUBROUTINE TO EVALUATE THE GRADIENT
C
SUBROUTINE GRADNT(N,X,G,ITER,NPROB,IGRAD)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N),G(N)

NUMERICAL GRADIENTS USED

anan

RETURN
END

figure C.12
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CS5 Two Loob Optimizations

When optimizing a simulation, it may take considerably less effort to calculate
the objective function for changes in some variables than others. An example
would be a time simulation in which the objective function is integrated over the
time interval being simulated ( say t=0 to t=100). Two of the variables may affect
the objective throughout the time interval. There may be three other variables
which affect the results of the simulation only over very limited time increments
(t=5 to t=6 and t=80 to t=82). For changes in the latter three variables, the objec-
tive can be evaluated by retaining the integral over the other times and simply rein-
tegrating over the time intervals that are affected by those variables (t=5 to t=6 and
t=80 to t=82). To take advantage of this fact, a two level optimization scheme
may be used.

minimize f ( x;, X3, X3, X4, X5 )
XyX2

minimize f ( Xy, X9, X3, X4, X5 )
Xy kaks .

Ib £ x £ ub
Ax<b

The linear constraints must not link variables to be optimized in different levels.

If the variables can be treated separably (e.g., if x, and x, had no impact in
the time intervals t=5 to t=6 and t=80 to t=82), then the two optimizations should
be solved separately. Hence, for this formulation to make sense, it must not be
possible to separate the effects of the variables. The inability to separate the
effects of the variables in the example shown above is denoted by showing that f,
the objective function, is a function of all five variables (for all time t=0 to t=100).

The inner loop optimization over the variables x3, x4, and x5 is executed for
each combination of the variables x, and x, arrived at during the outer loop optim-
ization. The inner loop optimization will require iterative objective evaluations to
converge. In the inner loop optimization, however, only the variables x3, X4, and
X5 are varied so less effort is required to determine the objective function. If all
five variables were optimized simultaneously, then most of the function calls would
involve changes in all five variables, nullifying the savings in computational effort
described above. The savings in computational effort afforded by holding x; and
Xs fixed in the inner loop optimization must be substantial to justify the above for-
mulation.
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For illustrative purposes, no constraints will be assumed for the variables x;,
X3, X3, X4, and xs. Two input data files are prepared to reflect the inner and outer
loop optimizations in essentially the same manner already illustrated in section
C.4. For the data file associated with the outer loop optimization, the input
ILOOP = 2 (figure C.13); while for the inner loop, ILOOP=1 (figure C.14). The
components of the decision vector to be involved in the outer loop optimization are
fixed in the inner loop optimization input file TBOUND = 5). Similarly, the com-
ponents of the decision vector involved in the inner loop optimization are fixed in
the outer loop optimization input file (IBOUND = 5). Although no upper or lower
bounds are in use, the input IBOND must be entered as a one so that the fixed
variables may be identified. Also, the print level for the inner loop optimization

(IPRINT = 0) will result in no output from the inner level.

NDIM ILOOP IPRINT I[PR

5 2 1 0
INTLIM KFAIL BIGSTP NPROB
2 1 0.2 1

IFORM FORMLA IBOND ICONST
1 1.0 1 0
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX

100 0 3 0.1E-07 0.1E-03 0.001
INUM ISAVE OFFDIF
2 1 0.001

IPARSH(NDIM) 1=ANALYTIC 2=FORWARD 3=CENTRAL 4=CENTRAL1 5:AUTO F/C
222222
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR

1 11 11
IBOUND(NDIM) 1=LB ACTIVE 2=UB ACTIVE 3=BOTH ACTIVE 4=FREE 5=FIXED

44555
XLB(NDIM) LOWER BOUNDS

00 0.0 00 00 00
XUB(NDIM) UPPER BOUNDS
00 00 00 00 00

XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
(not in use)
ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
(not in use)
AMAT(NROWS,NCOL) LINEAR CONSTRAINT MATRIX
(not in use)
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
(not in use) °
ITYPE(NROWS) O0=(EQUALITY) 1=Q) 2=a(5)

not in use)

figure C.13
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NDIM ILOOP IPRINT IPR

5 1 0 0

INTLIM KFAIL BIGSTP NPROB

2 1 02 1

IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 0 1 1 0

ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX

100 0 3 0.1E-07 0.1E-03 0.001

INUM ISAVE OFFDIF
2 1 0.001

IPARSH(NDIM) 1=ANALYTIC 2=sFORWARD 3=CENTRAL 4=CENTRALI1 5=sAUTO F/C
222222
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR

1 1111
IBOUND(NDIM) 1aLB ACTIVE 2=UB ACTIVE 3=BOTH ACTIVE 4=FREE S5=FIXED

55444
XLB(NDIM) LOWER BOUNDS

00 00 0.0 00 00
XUB(NDIM) UPPER BOUNDS
00 0.0 00 00 0.0

XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
(not in use)
ICOL(NCOL) COMPONENTS OF DECISION VECTOR INVOLVED IN LINEAR CONSTRAINTS
(not in use)
AMAT(NROWS ,NCOL) LINEAR CONSTRAINT MATRIX
(oot in use)
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
(oot in use)
ITYPE(NROWS) O=(EQUALITY) 1=(2) 2=(S)
(not in use)

figure C.14

As another example, suppose there are five variables related to the perfor-
mance of a solar cell. Two of the variables x, and x, are related to changes in
design that are relatively costly (e.g., extra processing or material costs), and the
performance level of the solar cell design can be considered essentially monoton-
icly increasing with respect to x, and x,. Where as, the variables x3, x4, and x5

may be changed with little effect on the cost of the design.

It is desired to reach a certain level of performance (denoted as Target). The

least squares objective is:

minimize (Target — f ( X}, X3, X3, X, X5 ) )?
X1 Xa X3 eXs

The function "f", which is obtained from a simulation, is the measure of solar cell
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performance. Furthermore, it is desirable to reach the target without using values
for x, and x, that lead to an expensive design.

If all the variables are optimized simultaneously, the optimization may move
primarily in the subspace associated with x; and x,, resulting in an expensive
design. The true objective is to find the best design with respect to x3, x4, and xs
for a combination of the variables x, and x, that just achieves the target. This is
formulated as follows:

minimize ( Target -~ mf ( x;, X2 ) )
XXy

mf = maximize f ( x;, X5, X3, X4, X5 )
X3.XeXs

The value of f is passed in directly from the simulation that the optimization
code is coupled with. Unlike the previous example, the outer loop optimization no
longer has the same objective function. The routine fouter.f (given below) is used
if the outer and inner loop optimizations involve different objective functions.

DOUBLE PRECISION FUNCTION FOUTER(F,X,N)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION X(N)

F = FUNCTION VALUE FROM INNER LOOP OPTIMIZATION
X = DECISION VECTOR (OUTER AND INNER LOOP)

N = DIMENSION OF DECISION VECTOR

FOUTER = FUNCTION VALUE OF OUTER LOOP

oNoNoNo RO NS

FOUTER = (TARGET-F)**2
RETURN
END

The user must supply the routine fouter.f (a dummy routine that simply uses the
statement FOUTER = F is supplied with the code). The outer loop optimization
must be related in some way to the objective function or the values of the variables
involved in the inner loop.

-4
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C.6 Implementation Instructions and Environment

This section will detail what is required of the user to prepare the program for
execution. It will also detail how the user calculates the amount of array storage
needed to solve a problem and how to change the device numbers associated with
the input and output files.

6.1 The Code

The code is broken into 8 modules (opt.f, update.f, redgrd.f, onedim.f
interloop.f, opt2.f, one2.f, and user.f). User.f contains the routines MAIN,
FOUTER, INITLZ, FUNCTN, and GRADNT, which must be partially coded by the
user. The latter three routines are described in section C.4, while the user supplied
MAIN for the program is described in the next two sections. FOUTER is described
in section C.5. Three examples of the user.f module, exlf, ex2.f, and ex3.f,
which correspond to the first three examples described in the manual, have been
supplied with the code. When coding a new problem, it is strongly suggestéd that
the user modify one of the example modules. This will minimize the possibility of
any errors in that portion of the code which must remain constant (e.g., calling
sequences for subroutines, etc.).

The source code requires approximately 190K bytes of storage (not including
the user.f module, which may be short or include a user supplied simulation pro-
gram). The user must generate object code for each module with a Fortran 77
compiler. The object codes are then linked to form one executable module. An
example of how the program would be compiled on a UNIX operating system is
given below (the modules can be compiled one at a time, a single command is
used below simply to save space in this report).

f77 -c opt.f update.f redgrd.f onedim.f interloop.f opt2.f one2.f

Depending on the compiler used some warning messages may be generated due to
the use of dummy routines (subroutines which must be supplied but the user does
not make use of). Any warnings with respect to nonreference of dummy variables
passed to subroutines should be ignored during the above compilation and all oth-
ers to be described. This generates the object files (opt.o, update.o, redgrd.o,
onedim.o, interloop.o, opt2.0, and one2.0) for each of the above modules which

should never change. The user may then prepare user.f to his/her exact needs and
compile it.

f77 -c user.f
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All the object codes are then combined to foﬁn the executable module (in this
example named opt.out). For this step, all the object modules must be included in
the single command below (or a similar one on a different operating system).

f77 -0 opt.out opt.o update.o redgrd.o onedim.o interloop.o
opt2.0 one2.0 main.o user.o

To solve future problems, the user will only have to change the module user.f, so
only the latter two steps need to be executed again. The executable module would
be run in foreground by entering:

opt.out <inputfile >outputfile

"inputfile” is the name of the input file, and "outputfile" is the name of the output
file. Note, for use at JPL on the Univac and VAX computers the inputfile has
been associated with the device number 8. Therefore, the user simply uses the
usual JCL to connect the input file to the number 8. For example, to run the first
example, ex1.f is compiied and linked with the optimization object modules and
then JCL is written to associate device number 8 with the input file inexl.d.
When solving example problem two, ex2.f must be compiled and linked with the
optimization object modules, and the JCL changed so that inex2.d is associated
with device number 8.

The amount of storage required for the object code modules is machine
dependent (274K on a Pyramid 90X minicomputer), but will generally be 1.3 to 2
times greater than the storage required for the source. The size of the executable
module is also machine dependent (275K on a Pyramid 90X minicomputer). The
size of the executable module quoted above does not include data storage (pri-
marily array storage). The program was developed on a minicomputer, but it
should fit on most personal computers, depending on problem size and the size of
the FUNCTN routine (which may call a simulation program).

If the two level optimization scheme is not going to be used (section C.5),
storage may be saved by substituting dopt2.f and done2.f for opt2.f and one2.f.
The former routines are dummy routines which do not contain the coding required
for the two level optimization. Hence, they require very little storage. Using the
dummy routines, the source coding is only 112K, the object codes are only 170K,
and the executable module is only 193K (the latter two figures are for a Pyramid
90X minicomputer).
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6.2 Array Storage and I/O

The amount of array storage needed to solve a problem is dependent on the
dimension of the problem and whether or not bounds, prescaling, and linear con-
straints are used. Rather than fix the dimension of the code to a maximum prob-
lem size, the array storage is passed using variable dimensions through the fixed
modules of the code. Using the module main.f, which is a very simple routine, the
user may fix the amount of array storage needed to solve any given problem.

Figure C.15 shows an example of the MAIN that is in exl.f, ex2.f and ex3.f.
The user may fix the values of the dimension statements and the values of the vari-
ables ZCORE and ICORE (shown in bold) in main.f according to the equations
given in figure C.15 to assure that there is sufficient storage to solve the problem.
The values of ZCORE and ICORE can be larger than required for the problem, so
that it is best to use values that will suffice for most problems. Then, the user only
has to change the dimensions if the problem is very large or machine storage is
limited. From figure C.15 it is seen that using the conjugate gradient algorithm to
calculate the search direction requires less array storage than a quasi-Newton algo-
rithm. Also, the use of upper and lower bounds, prescaling, and/or linear con-
straints increases the storage requirements.

The Fortran device numbers associated with the input and output files for the
optimization (only one of each is used) are given in the variables I[IN and IOUT,
respectively. They may be easily changed if the values given in figure C.15 lead
to a conflict with another program to be coupled with the optimization code
through the FUNCTN routine. However, on the UNIX system that the code was
developed on it is not necessary to use the Fortran 77 statement OPEN for the dev-
ice numbers 5 (standard input) and 6 (standard output). If the device numbers are
changed, OPEN statements should be included in the MAIN to connect the files to
be used to the device numbers. Other operating systems may require an open
statement for the device numbers 5 and 6 (and others) as well as job control
language to insure the files are connected. Where as, some operating systems will
not require an OPEN statement for any device number as long as the appropriate
JCL is used.
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USER MAY USE THIS ROUTINE TO CHANGE THE AMOUNT OF ARRAY STORAGE
as follows:
IFORM =10r2 ZCORE =6*n + n*(n+1¥2 + 15 ICORE = 2*n + 7
IFORM = 3 ZCORE = 4*n + 15 ICORE = 2*n + 7
for both case above
if IBOND =1 ZCORE = ZCORE + 2*n ICORE = ICORE + 2*n
if ISCAL =1 ZCORE = ZCORE +n
if ICONST =1 ZCORE = ZCORE + 2*(nr*nc) + nr*nr + 3*ar + 2*nc
ICORE = ICORE + 3*nc + 3*nr
where: n= NDIM, ar = NROWS, nc = NCOLS

IIN = input file device number
IOUT = output file device number

s sss8¢++40 not forgel OPEN statements l.f naded“"ttt.“#‘#‘t“

INTEGER ZCORE,ICORE
DOUBLE PRECISION Z(5000)
INTEGER 1(1000)

NOTE THE VALUES ABOVE AND THE VALUES OF ZCORE AND ICORE MUST AGREE

ZCORE = 5000

ICORE = 1000

IIN=S§

IOUT =6

CALL START(Z,], ZCORE,ICORE,IIN,IOUT)
STOP

END

figure C.15
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C.7 Use With SCAP1D

The optimization routine described in the previous six sections has been cou-
pled with a numerical model of a silicon solar cell, Solar Cell Analysis Program in
1 Dimension (SCAP1D), which was obtained from JPL. SCAP1D was extensively
modified and a very flexible interface was written to couple SCAP1D to the optim-
ization code. The optimization variables are inputs to SCAP1D and the objective
function is an output from SCAP1D. All the coding required to interface the two
programs has been provided (e.g., the user.f module) as well as additional routines
written to decrease the computational effort required to solve an optimization. In
addition, several changes have been made to the SCAP1D model to include addi-
tional variables related to solar cell performance and to generalize the model. This
section will detail the modifications made to SCAP1D and the input files required

to run the program.

7.1 Modifications to SCAP1D

Only those modifications that affect the SCAP1D input file are described in
this section. The format of the SCAPID input file has been changed from name
list input format to list directed input format because the former is not standard
Fortran 77. The new format for the SCAP1D data file is similar to the optimiza-
tion data file described in section C.4 (i.e., the organization of the file is clearly
illustrated by comment lines with the data entered on the line(s) below the com-
ment line).

Figure C.16 is an example of a SCAPI1D file. Two lines are provided at the
top of the file for comments to document the input file. The two comment lines
must be included, but they are skipped when the data is read in. In list directed
format, the occurrence of a slash, "/, implies that the rest of the data in that read
statement (the inputs associated with a single comment line) will not be read. If a
read statement is used (no slash), the data need not necessarily appear on a single
line. But if a slash is used, exactly one line must be skipped after the comment
~ line. Inputs that are not read in will take on the default values assigned in
SCAPID. If data is read in for a variable, it supersedes the default values assigned
in SCAPID.

All the input variables in figure C.16 that are in normal type are unchanged
from their interpretation in the original version of SCAP1D, which is described in
JPL publication #85-461. All the entries shown in bold in figure C.16 are either
new variables or new interpretations of variables that were in the original version. .

'DOE/JPL-1012-107, AR. Mokashi, T. Daud, and RM. Kachare, "High-Efficiency Silicon
Solar Cell Design Evaluation and Sensitivity Analysis”
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The paragraphs below describe the bold entries in the order they occur in the data
file.

The input SHADOW has been changed from a shadowing and reflection fac-
tor to a shadowing factor only. The input SHADOW determines the active area of
the cell (e.g., the area of the cell exposed to the incoming illumination). The
definition of the active area of the cell is A, = (1-SHADOW) AREA. This input
accounts for the shadowing of the illuminated surface of the cell by the current col-
lection grid that occurs in a conventional cell design. Hence, the incoming illumi-
nation is no longer affected by the input SHADOW. The new input REFLCT
reduces the incoming irradiation by the factor (1 -REFLCT), which is constant over
all wavelengths (this is what SHADOW used to do).

The inputs RADCOF and RADREC relate to radiative recombination. If the
flag RADREC is true, then radiative recombination will be included in the analysis.

The input RADCOF is the coefficient for radiative recombination (see equation
A3).

The inputs RFRONT and INTREF are used to implement light trapping in the
cell. Light trapping occurs when the light is reflected back to the front surface at
an angle greater than the critical angle, resulting in total internal reflection. The
input RFRONT is analogous to RBACK for a back surface reflector. It represents
the percent of the light that is reflected from the front surface back into the cell
(e.g., RFRONT = 1.0 is a perfect reflector, all light arrives at the front surface at
an angle greater than the critical angle). The input INTREF is an integer that
represents the number of times the light will be internally reflected from the front
surface. At each reflection, 1-RFRONT of the irradiation will be lost at the front
surface. The value of INTREF in the original version of SCAP1D was effectively
zero, since light trapping was not included in the code.

A print level of -1 has been added to SCAP1D, which results in absolutely no
output from SCAPID (unless an error occurs). This print level should be used
when running an optimization.

The last input line in figure C.16 relates to the use of anti-reflection coatings.
The logical input MODULE is related to passing the incident radiation through the
materials that make up the module. This logic has not been implemented, so
MODULE should always be false. If the logical input variable ARFILM is true,
then the incident illumination will be passed through an anti-reflection coating(s).
XRMED = the index of refraction of the surrounding medium. NLAY = the
number of layers (1 or 2). XRFILM = the index of refraction of each layer, which
is assumed constant over all wavelengths. XTHICK = the thickness of each layer
in um. The number of entries for XRFILM and XTHICK must agree with NLAY
or erroneous results will occur. If the logical input ARPRNT is true, the
reflectivity will be output as a function of wavelength.
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The formulas used to calculate the reflection of the incident illumination with
the inclusion of anti-reflection coating(s) are based on thin film optics. To use
these formulas the real and imaginary components of the index of refraction of sili-
con as a function of wavelength must be known. The files used to read in the
incident irradiation (AMO, AM1, or AM15) have been expanded to include the
refraction index of silicon. These files are only valid for use with silicon solar
cells, if the antireflection logic is in use. Figure C.17 is the top portion of the new
AM]1S data file. The data file now contains the wavelength, the irradiance per pm
at the wavelength, and the real and the imaginary (extinction coefficient) parts of
the index of refraction for silicon at the wavelength.
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THIS IS A TITLE LINE FOR DOCUMENTATION PURPOSES.
THIS IS A TITLE LINE FOR DOCUMENTATION PURPOSES.
IRUNUM TEMP SOLAR RS AREA Sl GE
1001 28. .TRUE. 0.000 4.00 .TRUE. .FALSE.
ZKN ZKP RADCOF AN AP BGNONBGNOP NCRITP NCRITN
7.1D1S 7.1D1S 2.0E-15 2.8E-31 9.9E-32/
EG0O NVO NCO EP(2) EGDO EG20 EG10 AD AQ2) C(2)
/
GMMAA BETA GMMAM ETAN ETAP NREFP NREFN ALPHAP
/
ALPHAN UPMIN UNMIN UPMAX UNMAX DOSNI EGNI CS
/
PI HP MO0 MH ME KB EO Ko Q
/
FRONT BACK BOTH SF SB
.FALSE. .[FALSE. .FALSE. 1.0D2 1.0D2
NODES [ITMAXQ ITMAX RESQAXQ RESIDMX DELMAXQ
250 30 25/
DELMAX REDUCE APPROX VINCR DROP DELSUN
/
ND NXD(20) XD(20) FAC ATOMSH XDMAX
I 2519*0 100.D0 19*0.D0 10.0D0 .TRUE. 280
BORON PHOS STEP ERFC FAIRT DDOP DDOPS UDOP
TRUE. .TRUE. FALSE. .TRUE. .FALSE. .FALSE. .FALSE. .FALSE.
XJF XJB DOP0O DOPBLK DOPL DIFTIM DIFTMP
02 00 2D20 -1.D19 -1.D19 0.D0 0.D0
PHOSFR PHOSBK DFILES ASCIl BINARY
FALSE. .FALSE. 0 .FALSE. .FALSE.
SBBGN LTBGN UBGN IGAM UGAM
.TRUE. FALSE. .FALSE. 0  .FALSE.
AUGER RADREC ET MIDG TAUP TAUN
.TRUE. FALSE. -1.DS .FALSE. 1.0D-3 2.0D-3
AM1 AMI1S UNIFRM MONO DARK UGEN CONCEN
.FALSE. .TRUE. .FALSE. .FALSE. .FALSE. .FALSE. 1.2022
SHADOW REFLCT WAVEL FLUXQ FILTER WFILTR BBODY TBB
0.00 0.07 0.5D0 /
IBC PWRINC AMO ER203 RBACK RFRONT INTREF ANGLE GDATA
.FALSE. 0.0D0 .FALSE. .FALSE. 10 00 0 0.0 .FALSE.
SPECRS ISR VSR ISR WL(20)
.FALSE. 11 0D0 1D-6/
IVNUM VSTART VSTOP VDEL VA
0 0.0 1.0 0.1/
SOLCEL
.TRUE.
IPRINT PSTEP TABL TABLQ
-1 5 JFALSE. .FALSE.
SAVE
FALSE.
DOCAP DELVC CAPERR CAP(25)
FALSE. .001D0/
MODULE ARFILM XRMED NLAY XRFILM(NLAY) XTHICK(NLAY) IRPRNT
JFALSE. _.FALSE. 1.0 1 1.0 1 0.0 FALSE.

figure C.16
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AML1.5

0.0831812
3.61800E17

125
0.295000
0.305000
0.315000
0.325000
0.335000
0.345000
0.355000
0.365000
0.375000
0.385000
0.395000
0.405000
0.415000
0.425000
0.435000
0.445000
0.455000
0.465000
0.475000
0.485000
0.495000
0.505000
0.515000
* 0.525000
0.535000
0.545000
0.555000
0.565000
0.575000
0.585000
0.595000
0.605000
0.615000
0.625000
0.635000
0.645000
0.655000

0. 428282 4.64986

1.32000
20.9600
113.480
182.230
234.430
286.010
355.8380
386.800
381.780
492.180
751.720
822.450
842.260
890.550
1077.07
1162.43
1180.61
121272
1180.43
1253.83
1242.28
1211.01
1244.87
1299.51
1273.47
1276.14
1277.74
1292.51
1284.55
126261
1261.79
1255.43
1240.19
1243.79
1233.96
1188.32

4.83000
498630
5.06128
5.14183
553088
6.04100
6.45103
6.86105
6.38547
585202
5.39246
498823
490758
4.32694
4.74630
4.66566
458502
451213
4.43944
436676
4.29407
422139
4.14870
4.08572
4.04246
3.99920
3.95593
391267
3.86941
3.82614
3.78288
3.73962
329
3.70309
3.69388
3.68467

3.95734
3.50163
3.29837
3.09512
2.90808
3.07517
2.57856
2,08195
1.58534
1.08873
0592119
0.169314
0.164743
0.160171
0.155600
0.151029
0.146457
0.141886
0.137314
0.132743
0.128171
0.123600
0.119029
0.114457
0.109886
0.105314
0.100743
9.61714e-02
9.16000e-02
8.70286e-02
8.24571e-02
7.78857e-02
7.33143e-02
6.837428¢-02
6.41714e-02
5.96000e-02

figure C.17
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7.2 The Optimization Data File

The optimization data file for use with SCAP1D is similar in format to the file
format detailed in sections C.4.1, C4.2, C.4.3 and C.4.4. The interface between
the optimization and SCAP1D has been generalized so that a number of variables
may be included or left out of the optimization. Also, the user may choose
between a number of different objective functions. This generalization is provided
by the INITLZ routine and requires several additional lines in the optimization data
file. The additional lines occur after the initial comment and data file line in a
standard file (see figure C.18). The additional lines identify the objective, read in
any constants to be used in the objective, and identify the variables to be used in
the optimization.

A complete list of the possible optimization variables is given below. The
variable name must be entered in the input file starting in column one so that the
optimization correctly passes the decision vector (x) to SCAP1D.

XJF Front junction depth measured from the front surface of the cell (um).
XJB Back junction depth measured from the back surface of the cell (um).
XDMAX Cell thickness (um).

DOPO'  tLog,, of front surface doping concentration, which is in atoms/cm?
DOPBLK TiLoglo of bulk doping concentration, which is in atoms/cm>

DOPL'  #Log,, of back surface doping concentration, which is in atoms/cm?

SF Log,o of effective front surface recombination velocity, which is in
cm/second.

SB Log;, of effective back surface recombination velocity, which is in
cm/second.

TAUN  Electron minority carrier lifetime for a lightly doped or intrinsic sub-
strate (saturation lifetime) in milliseconds. The hole saturation minority
carrier lifetime (TAUP) is taken as one half the value of TAUN.

SHADOW Shadowing factor, percent of cell covered by front contact grid (entered
as a decimal %/100).

REFLCT Reflection factor, percent of incoming radiation lost to reflection, con-
stant over all wavelengths (entered as a decimal %/100).

RS Contact resistance and grid resistance ().

CONCEN Concentration factor for illumination (e.g., 1.2022 with AM15 illumina-
tion for global power incidence).

" A positive value implies a net n-type or donor impurity.

iwhlle a negative value 1mplxes a net
p-type or acceptor impurity (e.g., 19 is 10'° P atoms/cm

and -19 is 10!° B atoms/cm?).
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XRFILM Index of refraction for anti-reflection layer(s). If there are n layers,
XRFILM should appear n times (n=1 or 2). The first incidence of
XRFILM is for the layer nearest the medium, last is for the layer
nearest the cell.

XTHICK Thickness of anti-reflection layer(s) in pm. If there are n layers,
XTHICK should appear n times (n=1 or 2). The first incidence of
XTHICK is for the layer nearest the medium, last is for the layer
nearest the cell.

UDOP1 Variable which will not affect the finite difference mesh (e.g., doping
concentration) to be used in user written UDOP routine. UDOP1 may
appear as many times as desired. The entire decision vector is passed to
the UDOP routine so the user determines how the variable is used.

UDOP2 Variable which will affect the finite difference mesh (e.g., junction
depth) to be used in user written UDOP routine. UDOP2 may appear
as many times as desired. The entire decision vector is passed to the
UDOP routine so the user determines how the variable is used.

All of the variables above also appear in the SCAP1D input file (except
UDOP1 and UDOP2). The value of any variable read in the optimization file
supersedes the value that appears in the SCAPID input file. In general, the user
will include only a subset of the variables listed above in the optimization data file.
Any variables not included then get their values from the SCAPI1D input file (or by
default). The situation is complicated by the logical entries in the SCAP1D data
file. If any of the inputs FRONT, BACK, or BOTH are entered as true in the
SCAPI1D input file, ohmic surfaces are used in the simulation and the inputs for SF
and/or SB are ignored in both data files. If the input ARFILM is false, the logic
associated with anti-reflection coatings will not be executed regardless of the values
of the variables XTHICK and XRFILM. Also, a nonzero number of occurrences
of the variables XTHICK and XRFILM in the optimization file (must be the same
and both must occur, but any of the values may be held fixed during the optimiza-
tion) will supersede the value of the variable NLAY in the SCAP1D data file.

A complete list of the objective functions that may be optimized is given
below. The first column is the identifier, which must be entered in the data file
starting in column one so the code may determine which objective function is to be
used. A brief explanation is given for each objective function. A more complete
description is given for each objective function in the main body of the report.
The decision vector for which the objective will be optimized is determined by the
user using the variable inputs described above. Along with the identifier, the user
may have to enter some constants that are used in the objective function. The con-
stants required are described for each objective.
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MAXEFF Maximize the efficiency as calculated in the original version of
SCAPID (no user supplied constants).

MAXEFFLR Maximize the efficiency with a correction for lateral resistance
through the emitter, which was not included in the original version of
SCAPID. The user must also supply one constant, which represents
the distance between the grid lines in centimeters. This input is used
in the formula for determining the correction for lateral resistance.

MAXVOC Maximize the open circuit voltage (no user supplied constants).

MAXJSC Maximize the short circuit current density (no user supplied con-
stants).

MAXGEN Maximize the electron-hole pair generation rate in the cell (no user
supplied constants).

Figure C.18 shows an example data file used to optimize the efficiency with
the lateral resistance correction term. The problem is stated mathematically below.

maximize effir( XJF, XJB, XDMAX, DOPO, DOPBLK, DOPL )
0.1 £ XJF £ 10.0
0.2 XJB < 50.0
10.0 XDMAX < 3000
14 DOPO < 20.6
-20.6 < DOPBLK < -14.0
-20.6 < DOPL < -14.0
0.4 DOPL - DOPBLK

The data file is identical to a normal optimization data file already discussed except
for the additional entries that occur between the data line associated with the
dimension etc. and the comment line for INTLIM etc. The additional lines also
use comment lines to show the organization. The first data line is the name of the
SCAPID data file that will be used (figure C.16). The second data line is the
name which identifies the objective function, in this case a maximization of
efficiency including a correction for lateral resistance. The objective name must
start in the first column. The third data line is for the user supplied constants in
the objective function, in this case the distance between grid lines in centimeters.
Even if the objective function to be used does not require user supplied constants,
a comment and data line must occur in the input file. One comment line identifies
that the next NDIM lines will be used to identify the decision vector. There must
be NDIM entries following the comment line. The order of the variables must
correspond to the order that they appear in the decision vector (e.g., x(1) is first,
x(NDIM) is last). Each variable name must be on a separate line and start in the

N IA

AN IA

IN A
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first column. In this example, twelve of the variables from the list are to be read
in from the optimization file. The variables involved in the optimization are XJF,
XJB, XDMAX, DOP0, DOPBLK, and DOPL. Although the variables SF, SB,
TAUN, SHADOW, RS, and CONCEN are read in from the optimization file, they
are held fixed (IBOUND = 5) and are not varied during the optimization. The out-
put associated with the input file shown in figure C.18 is given in figure C.19.

In figure C.20, the objective is to maximize the generation rate. The variables
to be involved in the optimization (BOUND = 5) represent the design of a double
layer anti-reflection coating. The problem is stated mathematically below.

maximize genrationrate( XRFILM(1), XTHICK(1), XRFILM(2), XTHICK(2) )
1.45 < XRFIILM(1) < 23
0.01 < XTHICK(l) £ 1.5
145 < XRFILM(2) s 23
001 s XTHICK(2) < 1.5

The output associated with the above problem statement and the input file
given in figure C.20 is given in figure C.21.

Figure C.22 shows an example data file used to optimize the efficiency
without the lateral resistance correction term (the original definition of efficiency
from SCAP1D). The problem is stated mathematically below.

maximize eff( XJF, XJB, XDMAX, DOPO, DOPBLK, DOPL )
0.1 < XJF < 10.0
02 < XJB s 500

10.0 < XDMAX < 300.0
14 < DOPO < 20.6
-20.6 s DOPBLK s -14.0
-20.6 <= DOPL < -14.0
-0.4 < DOPL - DOPBLK

The output associated with the above problem statement and the input file
given in figure C.22 is given in figure C.23.

Figure C.24 shows an example data file used to optimize the open circuit vol-
tage. The problem is stated mathematically below.

maximize voc( XJF, XJB, XDMAX, DOPO, DOPBLK, DOPL )
0.1 £ XJF £ 100
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0.2
10.0
14
-20.6
-20.6
-0.4

XJB < 50.0
XDMAX < 300.0
DOPO < 20.6
DOPBLK < -14.0
DOPL < -14.0
DOPL - DOPBLK

The output associated with the above problem statement and the input file
given in figure C.24 is given in figure C.25.

Figure C.26 shows an example data file used to optimize the short circuit
current density. The problem is stated mathematically below.

maximize jsc( XJF, XJB, XDMAX, DOP0O, DOPBLK, DOPL )

0.1
0.2
10.0
14
-20.6
-20.6
-0.4

s

XJF < 100

XJB s 50.0
XDMAX < 300.0
DOPO < 20.6
DOPBLK < -14.0
DOPL < -14.0
DOPL - DOPBLK

The output associated with the above problem statement and the input file
given in figure C.26 is given in figure C.27.
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NDIM ILOOP IPRINT IPR
12 1 1 0
THE NAME OF THE INPUT FILE FOR SCAP1D
INSCAP.D
NAME OF THE OBJECTIVE FUNCTION
MAXEFFLR
INPUT FOR OBJECTIVE (FOR THIS CASE DISTANCE BETWEEN GRID LINES IN CM)
0.1
VARIABLE NAMES, IN ORDER THEY APPEAR IN THE OPTIMIZATION VECTOR X
XJF
XiB
XDMAX
DOPO
DOPBLK
DOPL
SF
sB
TAUN
SHADOW
RS
CONCEN
INTLIM KFAIL BIGSTP NPROB
2 1 0.1 1
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 1 1 2 1
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3  0IE-09 0.1E-03 0.1E-03
INUM  [SAVE OFFDIF
2 1 0.001
IPARSH(NDIM) 1=ANALYTIC 2=-FORWARD 3=CENTRAL 4=CENTRALI1 S=AUTO F/C
222222222222
X(NDIM) INTTIAL VALUE FOR THE DECISION VECTOR
0.1 0.2 280.1 19.4031 -16.2986 -19.507 3.0
3.0 1.0 000 00 12022
IBOUND(NDIM) 1=LB ACTIVE 2«UB ACTIVE 3=BOTH ACTIVE 4=FREE S=FIXED
3333335 55S5S§°5S
XLB(NDIM) LOWER BOUNDS
01 02 100 140 -206 -206 -50 -5.0
XUBMNDIM)  UPPER BOUNDS
15,0 50.0 300.0 20.6 -14.0 -14.0 16.0 16.0 10000.0
10.0 30.0 300.0
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
04 1.0 1000 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1010
ICOL(NCOL) COMPONENTS OF DESICION VECTOR INVLOVED IN LINEAR CONSTRAINTS
5 6
AMATINROWSNNCOL) LINEAR CONSTRAINT MATRIX
-11
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
04
ITYPE(NROWS) O=(EQUALITY) 1=(>) 2=(<)
2

figure C.18 The file ineffir.d
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INPUT DATA FILE

(DATA FILE WRITTEN OUT HERE, SEE FIGURE C.18)

PROBLEM # 1

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBJ = -20.84767454

THE POINT IS =

0.10000000000  0.20000000000 280.10000000 19.403100000 -16.298600000 -19.507000000
3.0000000000 3.0000000000 1.0000000000 0.00000000000E+00 0.00000000000E+00 1.2022000000

ISTOP= 1 CONVERGENCE ON MAGNITUDE OF DERIVATIVE SATISFIED. MAG< 0.1000000E-09

PROBLEM SUMMARY

# [TERATIONS = 9 # OBJ EVALS = 104 # GRAD EVALS = 10

# OF RESETS = 2 # FAILED INTRPS=- 4

64 OF THE OBJECTIVE EVALUATIONS WERE FOR NUMERICAL DERIVATIVES
THE MINIMUM OBJECTIVE = -21.76188

THE OPTIMAL POINT IS =
0.5975804 0.2000000 290.4114 19.21597 -16.23632 -19.54320
3.000000 3.000000 1.000000 0.0000000E+00 0.0000000E+00 1.202200

THE MAGNITUDE OF THE GRADIENT AT THEMIN =  223.93014
THE GRADIENT AT MIN =

197.54 -0.00000E+00  101.61 15.471 18.242 15.093
-0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -246.08

ALL PROBLEMS HAVE BEEN COMPLETED

figure C.19 Output for input file inefflr.d
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NDIM ILOOP IPRINT IPR
7 1 1 0
THE NAME OF THE INPUT FILE FOR SCAP1D
INSCAPG.D
NAME OF THE OBJECTIVE FUNCTION
MAXGEN .
INPUT FOR OBJECTIVE (FOR THIS CASE DISTANCE BETWEEN GRID LINES IN CM)
(not in use)
VARIABLE NAMES, IN ORDER THEY APPEAR IN THE OPTIMIZATION VECTOR X
XRFILM
XTHICK
XRFILM
XTHICK
XDMAX
SHADOW
REFLCT
INTLIM KFAIL BIGSTP NPROB
2 1 1.0 2
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
i 1.0 1 0 1 1 1
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3  0.1E-09 0.1E-03 O.1E-03
INUM ISAVE OFFDIF
2 1 0.001
IPARSH(NDIM) 1=ANALYTIC 2«FORWARD 3=CENTRAL 4=CENTRALI 5=AUTO F/C
222222222222
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
145 0.2 23 0.2100.00.02 0.0
IBOUND(NDIM) 1=LB ACTIVE 2=UB ACTIVE 3=BOTH ACTIVE 4=FREE S$«FIXED
3333 5 S85S
XLB(NDIM) LOWER BOUNDS
1.45 01 1.45.01 1000 0.0
XUB(NDIM) UPPER BOUNDS
23 15 23 1.5 30001.0 1.0
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
10 10 10 10 10 101.0
ICOL(NCOL) COMPONENTS OF DESICION VECTOR INVLOVED IN LINEAR CONSTRAINTS
(oot in use)
AMAT(NROWSNCOL) LINEAR CONSTRAINT MATRIX
(not in use)
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
(not in use)
ITYPE(NROWS) O=(EQUALITY) 1a(>) 2=(<)

(not in use)

figure C.20 The file inmaxgen.d
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INPUT DATA FILE

(INPUT DATA FILE WRITTEN OUT HERE, SEE FIGURE C.20)

PROBLEM # 2

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBJ = -34.20296827

THE POINT IS =

1.4500000000  0.20000000000 2.3000000000  0.20000000000 100.00000000
0.00000000000E+00

ISTOP= 2 CONVERGENCE ON OBJECTIVE VALUE SATISFIED.
CHANGE IN OBJECTIVE < 0.1000000E-03 FOR LAST 3 ITERATIONS

PROBLEM SUMMARY

# ITERATIONS = 8 #OBJEVALS = 54 #GRADEVALS« 8
# OF RESETS « 2 # FAILED INTRPS= 3
26 OF THE OBJECTIVE EVALUATIONS WERE FOR NUMERICAL DERIVATIVES
THE MINIMUM OBIJECTIVE = -37.60268
THE OPTIMAL POINT IS =
1.47880S 0.1077049 2300000  0.2547077 100.0000 0.2000000E-01
0.0000000E+00
THE MAGNITUDE OF THE GRADIENT AT THE MIN =  1.0453586
THE GRADIENT AT MIN =
-0.45086 -0.25284E-01 -0.00000E+00 -0.94279 -0.00000E+00 -0.00000E+00
-0.00000E+00
ALL PROBLEMS HAVE BEEN COMPLETED

0.20000000000E-01

figure C.21 Output for input file inmaxgen.d
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NDIM ILOOP IPRINT IPR
12 1 1 0
THE NAME OF THE INPUT FILE FOR SCAPID
INSCAP.D
NAME OF THE OBIJECTIVE FUNCTION
MAXEFF
INPUT FOR OBJECTIVE (FOR THIS CASE DISTANCE BETWEEN GRID LINES IN CM)
0.1
VARIABLE NAMES, IN ORDER THEY APPEAR IN THE OPTIMIZATION VECTOR X

SHADOW
RS
CONCEN
INTLIM KFAIL BIGSTP NPROB
2 1 0.1 1
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 1 1 2 1
[TMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3 0.1E-09 0.1E-03 0.1E-03
INUM ISAVE OFFDIF
2 1 0.001
IPARSH(NDIM) 1=ANALYTIC 2«FORWARD 3«CENTRAL 4=CENTRALI 5«AUTO F/C
222222222222
X(NDIM)  INITIAL VALUE FOR THE DECISION VECTOR
0.2 0.2 250.0 20.4031 -17.2986 -19.507 3.0
30 1.0 000 00 12022
IBOUND(NDIM) 1=LB ACTIVE 2«UB ACTIVE 3«BOTH ACTIVE 4«FREE S5=FIXED
3333335 55555
XLB(NDIM) LOWER BOUNDS
0.1 02 100 14.0 -206 -20.6 -5.0 -5.0
XUB(NDIM)  UPPER BOUNDS
15.0 50.0 300.0 20.6 -140 -140 16.0 16.0 10000.0
10.0 30.0 300.0
XSCALENDIM) PRESCALING OF DECISION VARIABLES
04 1.0 1000 1.0 1010 10 1.0 1.0 1.0 1.0 1.0 1010
ICOLNCOL) COMPONENTS OF DESICION VECTOR INVLOVED IN LINEAR CONSTRAINTS
S 6
AMAT(NROWSNCOL) LINEAR CONSTRAINT MATRIX
-11
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
0.4

ITYPE(NROWS) O=(EQUALITY) 1=(>) 2=(<)
2

figure C.22 The file ineff.d
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INPUT DATA FILE

(INPUT DATA FILE WRITTEN OUT HERE, SEE FIGURE C.22)

PROBLEM # 3

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBJ = -18.87970504

THE POINT IS =

0.20000000000  0.20000000000 250.00000000 20.403100000 ~17.298600000 -19.507000000
3.0000000000 3.0000000000 1.0000000000  0.00000000000E+00 0.00000000000E+00 1.2022000000

ISTOP= 2 CONVERGENCE ON OBJECTIVE VALUE SATISFIED.
CHANGE IN OBJECTIVE < 0.1000000E-03 FOR LAST 3 ITERATIONS

PROBLEM SUMMARY

# ITERATIONS = 10 #OBJEVALS = 90 #GRAD EVALS =~ 10

# OF RESETS = 4 # FAILED INTRPS= 6

54 OF THE OBJECTIVE EVALUATIONS WERE FOR NUMERICAL DERIVATIVES
THE MINIMUM OBJECTIVE = -21.87110

THE OPTIMAL POINT IS =
0.1000000  0.2000000 282.2181 19.32295 -16.28486 -19.53169
3.000000 3.000000 1.000000 0.0000000E+00 0.0000000E+00 1.202200

THE MAGNITUDE OF THE GRADIENT AT THE MIN = 0.34966550E-0t

THE GRADIENT AT MIN =

-0.00000E+00 -0.00000E+00 -0.11244E-01 0.65867E-02 0.32438E-01 -0.79882E-03
-0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00

ALL PROBLEMS HAVE BEEN COMPLETED

figure C.23 Output for input file ineff.d
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NDIM ILOOP IPRINT IPR
12 1 1 0
THE NAME OF THE INPUT FILE FOR SCAP1D
INSCAP.D
NAME OF THE OBJECTIVE FUNCTION
MAXVOC
INPUT FOR OBJECTIVE (FOR THIS CASE DISTANCE BETWEEN GRID LINES IN CM)
0.1
VARIABLE NAMES, IN ORDER THEY APPEAR IN THE OPTIMIZATION VECTOR X
XIF
XiB
XDMAX
DOPO
DOPBLK
DOPL
SF
SB
TAUN
SHADOW
RS
CONCEN
INTLIM KFAIL BIGSTP NPROB
2 1 0.1 1
IFORM FORMLA [BOND ICONST NROWS NCOLS ISCALE
1 1.0 1 1 1 2 1
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3 0.1E-09 0.1E-03 0.1E-03
INUM ISAVE OFFDIF
2 1 0.001
IPARSHINDIM) 1«ANALYTIC 2aFORWARD 3=CENTRAL 4«CENTRALI S=AUTO F/C
222222222222
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
0.1 0.245.0 198 -14.5 -19.8 3.0
30 1.0 000 00 12022
IBOUND(NDIM) 1<LB ACTIVE 2=UB ACTIVE 3=BOTH ACTIVE 4=FREE S5«FIXED
3333335 55555
XLB(NDIM) LOWER BOUNDS
0.1 02 100 14.0 -206 -206 -5.0 -5.0
XUB(NDIM) UPPER BOUNDS
15.0 50.0 300.0 20.6 -140 -140 160 16.0 10000.0
10.0 30.0 300.0
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
04 1.0 1000 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.01.0
ICOL(NCOL) COMPONENTS OF DESICION VECTOR INVLOVED IN LINEAR CONSTRAINTS
5 6
AMAT(NROWSNCOL) LINEAR CONSTRAINT MATRIX
-11
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
0.4
ITYPE(NROWS) O=(EQUALITY) la(>) 2a(<)

2

figure C.24 The file invoc.d
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INPUT DATA FILE

(INPUT DATA FILE WRITTEN OUT HERE, SEE FIGURE C.24)

PROBLEM # 4

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBl = -676.8508655

THE POINT IS =

0.10000000000  0.20000000000 45.000000000 19.800000000  -14.500000000  -19.800000000
3.0000000000 3.0000000000 1.0000000000  0.00000000000E+00 0.00000000000E+00 1.2022000000

ISTOP= 2 CONVERGENCE ON OBJECTIVE VALUE SATISFIED.
CHANGE IN OBJECTIVE < 0.1000000E-03 FOR LAST 3 ITERATIONS

PROBLEM SUMMARY

# ITERATIONS = 9 #OBJEVALS= 80 ¥GRADEVALS= 9

#OF RESETS « S # FAILED INTRPS= 3

49 OF THE OBJECTIVE EVALUATIONS WERE FOR NUMERICAL DERIVATIVES
THE MINIMUM OBJECTIVE = -683.1086

THE OPTIMAL POINT IS =
0.1000000 0.2000000 36.71090 19.38476 -14.44830 -19.44760
3.000000 3.000000 1.000000 0.0000000E+00 0.0000000E+00 1.202200

THE MAGNITUDE OF THE GRADIENT AT THE MIN = 0.81529998

THE GRADIENT AT MIN =

-0.00000E+00 -0.00000E+00 0.00000E+00 0.26264 -0.63041 0.44533
<0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00

ALL PROBLEMS HAVE BEEN COMPLETED

figure C.25 Output for input file invoc.d
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NDIM ILOOP IPRINT IPR
12 1 1 0
THE NAME OF THE INPUT FILE FOR SCAP1D
INSCAP.D
NAME OF THE OBJECTIVE FUNCTION
MAX3sSC
INPUT FOR OBIECTIVE (FOR THIS CASE DISTANCE BETWEEN GRID LINES IN CM)
0.1
VARIABLE NAMES, IN ORDER THEY APPEAR IN THE OPTIMIZATION VECTOR X
XJF
XJjB
XDMAX
DOPO
DOPBLK
DOPL
SF
SB
TAUN
SHADOW
RS
CONCEN
INTLIM KFAIL BIGSTP NPROB
2 1 0.1 1
IFORM FORMLA IBOND ICONST NROWS NCOLS ISCALE
1 1.0 1 1 1 2 1
ITMAX IRSTRT NSTOP EPGRAD EPFUN EPX
100 0 3  0.1E09 0.1E-03 0.1E-03
INUM ISAVE OFFDIF
2 1 0.001
IPARSH(NDIM) 1=ANALYTIC 2<FORWARD 3=CENTRAL 4=«CENTRAL] S=AUTO F/C
222222222222
X(NDIM) INITIAL VALUE FOR THE DECISION VECTOR
0.1 0.2250.0 19.8 -14.5 -19.8 3.0
30 1.0 000 00 1.2022
IBOUND(NDIM) 1=LB ACTIVE 2«UB ACTIVE 3=BOTH ACTIVE 4=FREE S=FIXED
3333335 555535
XLB(NDIM) LOWER BOUNDS
0.1 02 100 14.0 -206 -206 -5.0 -5.0
XUB(NDIM) UPPER BOUNDS
15.0 50.0 300.0 20.6 -14.0 -140 16.0 16.0 10000.0
10.0 30.0 300.0
XSCALE(NDIM) PRESCALING OF DECISION VARIABLES
04 1.0 1000 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.01.0
ICOL(NCOL) COMPONENTS OF DESICION VECTOR INVLOVED IN LINEAR CONSTRAINTS
S 6
AMAT(NROWS,NCOL) LINEAR CONSTRAINT MATRIX
-11
BRHS(NROWS) RIGHT HAND SIDE OF LINEAR CONSTRAINTS
0.4
iY'PE(NROWS} 0=(EQUALITY) 1=(>) 2=(<)
2

figure C.26 The file injsc.d
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INPUT DATA FILE

(INPUT DATA FILE WRITTEN OUT HERE, SEE FIGURE C.26)

PROBLEM # 5

EXECUTING THE BROYDEN FAMILY MEMBER
0.00E+00 DFP + 1.0 BFGS

BEGIN ITERATION # 0

THE OBJ = -39.19861078

THE POINT IS =

0.10000000000  0.20000000000 250.00000000 19.800000000  -14.500000000 -19.800000000
3.0000000000 3.0000000000 1.0000000000 0.00000000000E+00 0.00000000000E+00  1.2022000000

ISTOP= 2 CONVERGENCE ON OBJECTIVE VALUE SATISFIED.
CHANGE IN OBJECTIVE < 0.1000000E-03 FOR LAST 3 ITERATIONS

PROBLEM SUMMARY

# ITERATIONS = 5 #OBIEVALS= 49 #GRADEVALS= §

# OF RESETS = 0 # FAILED INTRPS= 1

28 OF THE OBJECTIVE EVALUATIONS WERE FOR NUMERICAL DERIVATIVES
THE MINIMUM OBJECTIVE = -39.43213

THE OPTIMAL POINT IS =
0.1231489 0.2713563 300.0000 19.03269 -14.00000 -17.06288
3.000000 3.000000 1.000000 0.0000000E+00 0.0000000E+00 1.202200

THE MAGNITUDE OF THE GRADIENT AT THE MIN = 0.29160733E-01

THE GRADIENT AT MIN =

0.10014E-01 -0.44007E-05 -0.00000E+00 0.13807E-02 -0.27352E-01 0.14331E-03
-0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00 -0.00000E+00

ALL PROBLEMS HAVE BEEN COMPLETED

figure C.27 Output for input file injsc.d
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7.3 Implementation

As well as the program modules required for the optimization program, which
were discussed in section C.6, to run the optimization coupled with SCPAP1D
additional modules are required. The module interscap.f is used in place of
interopto.f . The additional modules are main.f, fouter.f, optoscap.f, mainscap.f,
scapl.f, scap2.f, scap3.f, scap4.f, scap5.f, scap6.f, scap7.f, scap8.f, setgen.f,
linpack.f, addscap.f, and udop.f. The main.f and the fouter.f module have been
separated from optoscap.f so that they may be altered without having to recompile
the module optoscap.f, which is a rather lengthy interface module (includes the
routines FUNCTN, GRADNT, and INITLZ). The method of compiling the source
codes to get object codes and linking the object codes to get the executable module
is the same as discussed in section C.6 .

The optimization and SCAP1D source codes together require approximately
472K bytes of storage (this assumes the dummy outer loop routines dopt2.f and
done2.f are used). The user must generate object code for each module with a For-
tran 77 compiler. The object codes are then linked to form one executable module.
An example of how the program would be compiled on a UNIX operating system
is given below (the modules can be compiled one at a time, a single command is
used below simply to save space in this report).

f77 -c -w opt.f update.f redgrd.f onedim.f interscap.f done2.f done2.f
main.f fouter.f optoscap.f mainscap.f scapl.f scap2.f scap3.f
scap4.f scapS.f scap6.f scap7.f scap8.f setgen.f linpack.f
addscap.f udop.f

If the steps in section C.6 were already completed it is not necessary to recompile
the modules opt.f, update.f, redgrd.f, onedim.f, dopt2.f, and done2.f. The -w flag
invokes the compiler option that warnings not be printed out. There are numerous
(thousands) of warnings in the modules that make up SCAP1D and the warning
flag should be shut off to avoid voluminous output from the compile step. The
warnings will not halt the compilation and do not lead to any errors in the execu-
tion of the program. This generates the object files. Then all the object codes are
combined to form the executable module (in this example named opt.x). For this
step all the object modules must be included in the single command below (or
similar one on a different operating system).

f77 -o opt.x  opt.o update.o redgrd.o onedim.o interscap.o
dopt2.0 done2.0 main.o fouter.o optoscap.o
mainscap.o scapl.o scap2.0 scap3.o
scap4.0 scap5.o scap6.o scap7.0 scap8.o setgen.o
linpack.o scapblk.o setgen.o linpack.o addscap.o
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udop.o

To solve different problems (e.g., different objective functions or decision vectors
supplied by the interface) the user need only change the input data files. The exe-
cutable module would be run in foreground by entering:

opt.out <inputfile >outputfile

where inputfile is the name of the optimization input file (e.g., figure C.18 or figure
C.19) and outputfile is the name of the output file (e.g., figure C.20 or figure C.21).
Since the program takes considerable time to execute it should be run in batch
(background) mode. Note, for use at JPL on the Univac and the VAX computers
the optimization input file has been associated with the device number 8. To run
different data files (e.g., the different examples provided with this code) it is only
necessary to change the JCL to associate the desired optimization input data file
with the device number 8 (e.g., to reproduce the output in figure C.19, the file
inefflr.d must be associated with unit 8). It is not necessary to recompile or relink
the program modules to run a different optimization (defined by a different data
file).

The amount of storage required for the object code modules is machine
dependent (535K on a Pyramid 90X minicomputer), but will generally be 1.3 to 2
times greater than the storage required for the source. The size of the executable
module is also machine dependent (484K on a Pyramid 90X minicomputer). The
size of the executable module quoted above does not include data storage (pri-
marily array storage). A significant amount of array storage is required by the
SCAPID program.

The executable module is run with the three input data files already discussed
in this section. The device numbers are 5 (optimization input file), 9 (SCAP1D
input file), and 36 (incident radiation input file). The device number for the optim-
ization output (and SCAP1D output) is 6. In addition, if the flag IRPRNT is true
the program uses the output files SPECTRUM (device number 10) and
REFLECTED (device number 11). As already mentioned in section C.6 the device
numbers 5 and 6 can be altered by changing the module main.f. However, the
data files associated with SCAPID are set in the code and cannot be changed
without considerable effort.

To use the optimization code to run SCAPID a single time set the input
ITMAX = 0 and/or IBOUND = 5 for each component of the decision vector.

Program installation can be checked by running the executable module with
the input file inxr.d (optimization input file associated with device #5 and shown in
figure C.19), which is supplied with this manual. The output that should result is
shown in figure C.21. Figure C.18, the input file inlr.d, can also be run but
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requires considerably more computational effort to complete. The resulting output
is shown in figure C.20 . Note that the appropriate SCAP1D data files (INSCAP.D
and INSCAP1.D) are also supplied for the runs.
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